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Resumen 

En este artículo se analiza y diseña un controlador PD discreto 

y no lineal con compensación de la dinámica del robot 

manipulador en la trayectoria deseada para minimizar los 

efectos producidos por las perturbaciones acopladas; el 

objetivo de control se alcanza calculando la cota mínima que 

garantiza condiciones suficientes para la existencia y unicidad 

del punto de equilibrio y la cota mínima que garantiza 

condiciones suficientes para lograr la estabilidad asintótica en 

forma global del sistema en lazo cerrado, a través de la 

utilización del método directo de Lyapunov, derivado de este 

conjunto de desigualdades se procede al diseño del 

controlador PD en el dominio del tiempo continuo, y 

posteriormente este controlador se transforma al dominio del 

tiempo discreto por el método numérico de Euler. El 

rendimiento y el resultado se demuestran mediante un caso 

práctico con el robot manipulador Niryio One. 

 

Palabras clave—Estabilidad de Lyapunov, Control discreto 

no lineal, Robot manipulador. 

 

 

Abstract 

In this paper, we analyze and design a discrete and non-linear 

PD  controller with compensation of the dynamics of the robot 

manipulator in the desired trajectory to minimize the effects 

produced by matched disturbances; the objective is reached 

by computing the minimum bound that guarantees sufficient 

conditions to existence and uniqueness of the equilibrium 

point and the minimum bound that guarantee sufficient 

conditions to achieve global asymptotic stability of the closed-

loop system, through direct method of Lyapunov, derived from 

these inequalities we proceed to the design of the PD 

controller in the continuo-time domain, this controller is 

transformed to the discrete-time domain by the Euler 

numerical method. The performance and result are 

demonstrated by practice-case with the manipulator robot 

Niryio One. 

 

Keywords— Lyapunov Stability, Nonlinear Discrete PD 

Control, Robot Manipulator 

 

1. INTRODUCTION 

 

A robot manipulator is a non-linear system and has 

complicated behavior that includes interactions between 

multiple joints, non-linear effects such as centrifugal and 

Coriolis forces, variable inertia depending on arm 

configuration, and as higher performance is pursued in terms 

of speed and precision, these dynamics become more 

important [1], other factors that affect the performance of 

manipulator robots are the effects inherent to mechanical 

systems such as the effect of elasticity in the mechanical 

coupling between the actuator and the joint, friction, angular 

play between gears, dead zone caused by use of gears, cyclo 

reductors, harmonic reductors, toothed bands, chains, cables, 

endless screws, in addition to exogenous disturbances such as 

torques or forces due to possible physical contact with the 

robot body or interaction with external objects and finally the 

uncertainty in the model. 

There are excellent research works where problems related to 

the performance of manipulator robots are addressed, for 

example in [2], [3], [4], and [5] the designs of control systems 

that ensure global asymptotic stability for disturbance-free 

manipulator robots. Regarding robust controllers applied to 

robots that operate under uncertain conditions and report 

asymptotic stability conditions globally and locally, it is 

reported by [6], [7], [8], and [9]. In recent years, numerous 

works have been reported where they successfully address the 

aforementioned problems that affect manipulator robots, each 

of these methodologies attacks nonlinearities differently or 

independently, for example, in [10] they propose an adaptive 

control to solve the problem of position regulation in a robot 

manipulator with uncertainty in the model and to demonstrate 

global asymptotic stability. Another control technique widely 

used to solve the uncertainty problem in the model and to 

reject external disturbances of the coupled type is the sliding 

mode control formulated by [11], where it achieves stability 

in finite time, but one of its drawbacks is the chattering effect 

on the control signal (high-frequency, low-amplitude 

oscillations). In [12] they solve the inconvenience of reaching 

the sliding surface and the effect of chattering is reduced with 

the proposal of the controller for integral sliding modes; in 

[13] they propose a control of variable structure composed of 

the control by integral sliding modes and a quadratic optimal 

linear controller for time-varying nonlinear systems in the 

presence of uncoupled perturbations. On the other hand, in 

[14] the super-twisting control applied to a manipulator robot 

that operates under Lipschitz uncertainty is proposed, the 

authors use the derivative of the Lyapunov function for a 

nominal model of the robot that is used for the design of the 

sliding surface, providing a theoretically exact convergence 

of uncertain system states to the origin using a continuous 

control signal, however, all of this excellent work is 

formulated in the continuous-time domain. In parallel, 

discrete-time domain controllers are proposed that address 

problems related to the performance of manipulator robots, 

for example, [15] proposes a discrete-time energy-based 

control with the IDA-PBC method for linear mechanical 

systems that use the midpoint discrete gradient that conserves 

energy, in [16] they employ an integration scheme to preserve 

the phase space of the flow of a discrete-time Hamiltonian 

system. Recently, in [17] they proposed discrete-time 

eigenvalue assignment based on the definition of an objective 

system, using the midpoint rule, the advantages compared to 

the continuous-time controller implementation include 
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unconditional stability and setting the sampling period within 

the bounds of the sampling theorem. In [18] the formulation 

of a discrete-time energy-based control technique for 

mechanical systems, in particular manipulator robots, based 

on symplectic numerical integration is presented. Energy 

shaping is the central argument of passivity-based controls, 

and symplectic numerical integration schemes preserve a 

modified Hamiltonian. Therefore, according to Kotyczka and 

Toma, this method is appropriate to translate the energy 

formation step to discrete time. 

The contribution of this work is the discretization of a non-

linear discrete PD controller with compensation of the 

dynamics of the robot manipulator on the desired trajectory 

using the Euler numerical method, applied to a manipulator 

robot with three degrees of freedom called Niryo One. 

The rest of the paper is organized as follows. In section 1, the 

Euler-Lagrange model for a robot manipulator. In section 2, 

the global non-linear PD controller for the robot manipulator 

is shown. Simulations made for 3-DOF industrial robots are 

presented. Finally, we give the conclusion. 

 

 

2. DYNAMIC MODEL OF ROBOT MANIPULATOR 

AND USEFUL PROPERTIES 

The Lagrange equations of motion for a robot manipulator on 

l DOF (degrees-of-freedom) with revolute joints and rigid 

links can be written as [5]:  

 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) + 𝑓(�̇�) = 𝜏(𝑡) + 𝑤(𝑡),            (1) 

 

where 𝑞(𝑡) ∈ ℝ𝑙 is the vector of joint displacements, �̇�(𝑡) ∈
ℝ𝑙 is the vector of joint velocities, 𝜏(𝑡) ∈ ℝ𝑙 is the vector of 

applied torques, 𝑡 ∈ ℝ𝑙, 𝑀(𝑞) ∈ ℝ𝑙𝑥𝑙  is the symmetric 

positive definite inertial matrix, 𝐶(𝑞, �̇�) ∈ ℝ𝑙𝑥𝑙  is the 

centrifugal and Coriolis forces matrix, 𝑔(𝑞) ∈ ℝ𝑙 is the vector 

of gravitational torques, 𝑤(𝑡) ∈ ℝ𝑙 is the matched disturbance 

vector i.e. uncertainty in the model, exogenous disturbances 

such as torques or forces due to possible physical contact with 

the robot body or interaction with external objects, and 𝑓(�̇�) ∈
ℝ𝑙 is the friction torques vector defined by 

 

𝑓(�̇�) = 𝐹𝑞,̇                                                                          (2) 

 

here, the matrix 𝐹 ∈ ℝ𝑙𝑥𝑙 is assumed diagonal and positive 

definite where the main diagonal includes the constant 

coefficients of viscous friction of each joint. All states are 

available for measurements for feedback.  

 

Property 1. The inertial matrix 𝑀(𝑞) is symmetric and 

positive definite for all 𝑞(𝑡) ∈ ℝ𝑙. The matrix 𝑀−1(𝑞) exists 

and is positive definite as well, there exists a positive constant 

𝐾𝑀 such that for all 𝑥, 𝑦, 𝑧 ∈ ℝ𝑙 we have [3] 

 
‖𝑀(𝑥)𝑧 − 𝑀(𝑦)𝑧‖ ≤ 𝐾𝑀‖𝑥 − 𝑦‖‖𝑧‖                                (3) 

 

Property 2. The centrifugal and Coriolis matrix 𝐶(𝑞, �̇�) and 

the time derivative �̇�(𝑞) of the inertial matrix satisfy that 

skew-symmetry property as follows [3] 

 

�̇�𝑇 [
1

2
�̇�(𝑞) − 𝐶(𝑞, �̇�)] �̇� = 0                                             (4) 

for all 𝑞, �̇� ∈ ℝ𝑙. 

 

Property 3. There exists a positive constant 𝐾𝑐1 such that for 

all 𝑞, 𝑥, 𝑦 ∈ ℝ𝑙 we have [3] 

 
‖𝐶(𝑞, 𝑥)𝑦‖ ≤ 𝐾𝑐1‖𝑥‖‖𝑦‖.                                                 (5) 

 

Property 4. There exists a positive constant 𝐾𝑐2 such that for 

all 𝑠, 𝑣, 𝑥, 𝑦, 𝑧 ∈ ℝ𝑙 we have [3] 

 
‖𝐶(𝑥, 𝑧)𝑠 − 𝐶(𝑦, 𝑣)𝑠‖ ≤ 𝐾𝑐1‖𝑧 − 𝑣‖‖𝑠‖ + 𝐾𝑐2‖𝑥 −
𝑦‖‖𝑠‖‖𝑧‖.                                                                          (6) 

 

Property 5. There exists a positive constant 𝐾𝑔 such that for 

all 𝑥, 𝑦 ∈ ℝ𝑙 we have [3] 

 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐾𝑔‖𝑥 − 𝑦‖.                                         (7) 

 

3. GLOBAL NON-LINEAR PD CONTROLLER FOR 

ROBOT MANIPULATOR 

The global nonlinear PD motion problems can be established 

as follows: given a desired function ending vector position 

𝑞𝑑(𝑡) ∈ ℝ𝑙, the control objective for the tracking under study 

consists in making the systems globally asymptotically stable 

and ensuring that 

 

lim
𝑡→∞

‖𝑞(𝑡) − 𝑞𝑑(𝑡)‖ = 0,                                                   (8) 

 

for arbitrary initial condition 𝑞(0) ∈ ℝ𝑙 despite the presence 

of external disturbances. 

 

Proposition 6. The global nonlinear PD controller of the form 

[3]  

 

𝜏(𝑡) = 𝑀(𝑞𝑑)�̈�𝑑 + 𝐶(𝑞𝑑)�̇�𝑑 + 𝑔(𝑞𝑑) + 𝑓(�̇�𝑑) − 𝐾𝑝�̃� −

𝐾𝑣 �̇̃�                                                                                     (9) 

 

Where �̃� = 𝑞(𝑡) − 𝑞𝑑(𝑡), �̇̃� = �̇� − �̇�𝑑 are the position error 

vector and velocity error vector respectively, and  𝐾𝑝 , 𝐾𝑣 are 

(𝑙𝑥𝑙) and symmetric positive definite matrix, imposes the 

manipulator motion around 𝑞𝑑(𝑡), when 𝑤 = 0. 

 

The controller to be constructed consists of the dynamics of 

the robot manipulator in the desired trajectory and friction 

torque compensators, a proportional-differential part that 

imposes the desired stability properties on the disturbance-

free system motion. 

 

The state-space representation of the close-loop system (1) 

and (9), in terms of the errors, is given by 
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(10) 
𝑑

𝑑𝑡
�̃� = �̇̃� 

𝑑

𝑑𝑡
�̇̃� = 𝑀−1(�̃� + 𝑞𝑑)[𝜉(𝑡, �̃�, �̇̃�) + ℎ(𝑡, �̃�, �̇̃�) + 𝑤(𝑡)], 

 

where ℎ is the residual dynamics, defined as: 

 

ℎ(𝑡, �̃�, �̇̃�) = [𝑀(𝑞𝑑) − 𝑀(�̃� + 𝑞𝑑)]�̈�𝑑 + [𝐶(𝑞𝑑 , �̇�𝑑) − 𝐶(�̃� +

𝑞𝑑 , �̇̃� + �̇�𝑑)]�̇�𝑑 + 𝑔(𝑞𝑑) − 𝑔(�̃� + 𝑞𝑑) + 𝑓(�̇�𝑑) − 𝑓(�̇̃� + �̇�𝑑),                                                                                                 

                                                                                           (11) 

and 𝜉 is the PD controller and Coriolis matrix 

𝜉(𝑡, �̃�, �̇̃�) = −𝐾𝑝�̃� − 𝐾𝑣 �̇̃� − 𝐶(�̃� + 𝑞𝑑, �̇̃� + �̇�𝑑) 

 

Proposition 7. The inequality to demonstrate unicity of the 

equilibrium points| for the close-loop system (10) proposed by 

[3] 

 

𝜆𝑚𝑖𝑛{𝐾𝑝} > 𝐾𝑀‖�̈�𝑑‖ + 𝐾𝑐2‖�̇�𝑑‖2 + 𝐾𝑔,                           (12) 

 

gives a sufficient condition for it (where 𝜆𝑚𝑖𝑛 is defined as the 

smaller eigenvalues). The inequality (12) is considered for the 

design of the global Non-linear PD Controller. 

 

3.1. GLOBAL ASINTOTIC STABILITIES (GAS) 

   The global asymptotic stability is analyzed through the 

direct method of Lyapunov applied to close-loop system (10), 

the purpose is established conditions on the design matrices 

𝐾𝑝 and 𝐾𝑣 that guarantee global asymptotic stability of the 

origin. 

 

Proposition 8. Consider the Lyapunov candidate function [3] 

of the form 

 

𝑉(𝑡, �̃�, �̇̃�) =
1

2
�̇̃�𝑇𝑀(�̃� + 𝑞𝑑)�̇̃� +

1

2
�̃�𝑇𝐾𝑝�̃� +

𝛾 tanh(�̃�)𝑇𝑀(�̃� + 𝑞𝑑)�̇̃�.                                                     (13) 

 

Proposition 9. We have that 𝑉(𝑡, 0,0) = 0 for �̃� = 0, �̇̃� = 0 

and 𝑉(𝑡, �̃�, �̇̃�) > 0 for all 𝑡 ≥ 0 and �̃� ≠ 0, �̇̃� ≠ 0 if the next 

inequality is hold [3] 

 

𝜆𝑚𝑖𝑛{𝐾𝑝} >
𝛾2𝛼1

2𝜆𝑚𝑎𝑥
2 {𝑀}

𝜆𝑚𝑖𝑛{𝑀}
,                                                  (14) 

 

where 𝛾, 𝛼 are positives constants and 𝜆𝑚𝑎𝑥  is defined as the 

largest eigenvalues. 

 

Proposition 10. The inequalities to demonstrate that the time 

derivative of the Lyapunov candidate function (13) is negative 

definite and therefore the equilibrium points for the close-loop 

system (10) are GAS if the next inequalities are holds 

 

 

𝜆𝑚𝑖𝑛{𝐾𝑝} > 𝜆𝑚𝑖𝑛{𝐾𝑣} + 𝛼3𝐾ℎ2                                        (15) 

 

𝜆𝑚𝑖𝑛{𝐾𝑝} >
𝛼3(0.5𝐾ℎ2+0.5𝐾ℎ2‖�̇�𝑑‖+0.5𝐾ℎ1)2

1

𝛾
𝜆𝑚𝑖𝑛{𝐾𝑣}−𝛼4𝜆𝑚𝑎𝑥{𝑀}+

𝐾ℎ1
𝛾

+𝐾𝑐1𝛼2

+ 𝜆𝑚𝑖𝑛{𝐾𝑣} +

𝛼3𝐾ℎ2                                                                                (16) 

 

𝜆𝑚𝑖𝑛{𝐾𝑣} > 𝛾 (𝛼4𝜆𝑚𝑎𝑥{𝑀} +
𝐾ℎ1

𝛾
+ 𝐾𝑐1𝛼2)                  (17) 

 

The prepositions 7 to 10 are used for the design of the global 

Non-linear PD Controller for the robot manipulator in the 

continue-time domain (see Fig. 1). 

 
Fig. 1. Closed-loop control system in the continuous-time domine.  

 
Source: self made.  

 

 

 

3.2. DİSCRETE NON-LİNEAR PD CONTROLLER 

   The discretization of the closed-loop controller system can 

be considered a good approximation if the sampling rates are 

high enough compared to the dynamics of the system [17], 

however, increasing the sampling time leads to performance 

degradation and instability [18]. Normally the control laws 

are derived with the implicit hypothesis of discretizing the 

continuous controllers, and derived from the complexity of 

the control algorithms, the use of a digital system is essential, 

usually, the control laws are discretized with an acceptable 

approximation to the continuous integration [1], this method 

is commonly used. 

 

When the robots are controlled by digital processor, the input 

control signal is update at each sampling instant by a DAC 

(digital to analog convert) and a holding device so that the 

input is piecewise constant [1]. 

 

Assumption 11. We have that 𝜏(𝑡) ≅ 𝜏(𝑘𝑇) where 𝑘𝑇 ≤ 𝑡 ≤
(𝑘 + 1)𝑇, where 𝑇 is the sampling time. 

 

We used the backward and forward Euler methods applied to 

close-loop continuous system (10), and the following 

equation are obtained 

 

�̃�(𝑡) ≅ 𝑥1(𝑘 − 1)                                                             (18) 

 

�̇̃�(𝑡) ≅
𝑥1(𝑘)−𝑥1(𝑘−1)

𝑇
= 𝑥2(𝑘 − 1)                                   (19) 

 

Using algebra and shift to right (k→k+1) in the equations (18) 

and (19), we have the derivative in differences: 

 

 

 

 

                                                                                                                                   



 

209 

 

𝑥1(𝑘 + 1) = 𝑥1(𝑘) + 𝑇𝑥2(𝑘)                                               (20) 
𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝑇𝑀−1(𝑥1  + 𝑞𝑑) 

[−𝐶 (𝑥1 + 𝑞𝑑, 𝑥2 +
𝑞𝑑(𝑘) − 𝑞𝑑(𝑘 − 1)

𝑇
) 𝑥2 + 𝐾𝑝𝑥1 + 𝐾𝑣𝑥2

+ ℎ(𝑘, 𝑥1, 𝑥2) − 𝑤(𝑘)] 

 

4. RESULT 

The simulation setup involves a robot manipulator (see Fig. 

2). The base of the mechanical robot has a horizontal revolute 

joint 𝑞1, whereas two link have vertical revolute joints 𝑞2 and 

𝑞3. The remaining DOF corresponds to the end effector 

orientation. Nominal parameters of mechanical manipulator 

are summarized in Table I. The robot manipulator was 

required to move in the space from the initial conditions 

𝑞(0) = [
𝜋

2

−𝜋

2

𝜋

2
]

𝑇
(reference for each joint are shown in 

Fig. 2) to the desired trajectories 

 

𝑞𝑑(𝑘) = [
𝜋

4
(1 − 𝑒−2(𝑘𝑇)2

) +
𝜋

4
(1 −

𝑒−2(𝑘𝑇)3
)𝑠𝑒𝑛(0.2𝜋𝑘𝑇)

𝜋

12
(1 − 𝑒−2(𝑘𝑇)3

) +
𝜋

12
(1 −

𝑒−2(𝑘𝑇)3
)𝑠𝑒𝑛(0.4𝜋𝑘𝑇)

𝜋

20
(1 − 𝑒−2(𝑘𝑇)3

) +
𝜋

20
(1 −

𝑒−2(𝑘𝑇)3
)𝑠𝑒𝑛(0.6𝜋𝑘𝑇)].                                                   (21) 

 

The initial velocity �̇�(0) ∈ ℝ3 were zeros for the simulation. 

We achieved the control goal by implementing the discrete 

and non-linear PD controller, with the follow parameters 

 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{632.8 631.8 630.8}                                (22) 

 

𝐾𝑣 = 𝑑𝑖𝑎𝑔{4.49 4.39 4.29}                                       (23) 

 

The simulation was performed affecting the model with 

harmonic functions as external disturbance, that is, 

 

𝑤𝑖(𝑘) =
𝜋

8
sen (2𝜋𝑖𝑘𝑇)                                                    (24) 

 
Table 1. Parameter of the mechanical manipulator 

 

Source: self made.  

Fig. 2. Manipulator robot Niryo One. 

 

 
Source: self made.  

 

 

Figure 3, which illustrate angular position and desired 

angular position, corroborates disturbance attenuation of the 

closed-loop system. In figure 4 is illustrated the phase plane 

of the close-loop system without disturbance, corroborates 

that origin is global asyntotic stabilitiy. 

 
Fig. 3. Performance for the closed-loop system.  

 
Source: self made.  

 
Fig. 4. Phase plane for close-loop systems, (a) phase plane of 

𝑞1(𝑘), 𝑞1(𝑘 + 1), (b) phase plane of 𝑞2(𝑘), 𝑞2(𝑘 + 1), (c) 

phase plane of 𝑞3(𝑘), 𝑞3(𝑘 + 1). 

 

(a) 

 

Description Notation Values 
Units 

Length of link 1 𝑙1 0.16048 m 

Length of link 2 𝑙2 0.297 m 

Mass of link 1 𝑚1 1 kg 

Mass of link 2 𝑚2
 1.631 kg 

Inertial 1 𝐼1 4.676𝑥10−3 𝑘𝑔𝑚2 

Inertial 2 𝐼2 1.468𝑥10−3 𝑘𝑔𝑚2 

Inertial 3 𝐼3 7.468𝑥10−3 𝑘𝑔𝑚2 

Friction coeff. 1 𝛼11 0.01 Nm 

Friction coeff. 2 𝛼22 0.02 Nm 

Friction coeff. 3 𝛼33 0.015 Nm 

Gravity 

acceleration 

g 9.8 m/s 
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(b) 

 
(c) 

 
 

Source: self made.  

 
5. CONCLUSION 

   We presented a global solution of the discrete and non-linear 

PD motion problem applied to the Niryo One manipulator 

robot and validate in simulation that global asymptotic 

stability is hold in both time domine. The objective of control 

is achieved in the presence of a disturbance vector.  

 

 

APPENDIX 

The equation of motion of the simulation manipulator 

governed by (1) was specified by applying the Euler-Lagrange 

formulation [3],  

 

𝑀(𝑞) = [

𝑚11 0 0
0 𝑚22 𝑚23

0 𝑚23 𝑚33

], 

 

where 

𝑚11 = 𝑚1𝑙1
2𝑐𝑜𝑠2(𝑞2) + 𝐼1

+ 𝑚2[𝑙1 cos(𝑞2) + 𝑙2cos (𝑞2 + 𝑞3)] 
𝑚22 = 𝑚1𝑙1

2 + 𝑚2𝑙1
2 + 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2 cos(𝑞3) + 𝐼2 + 𝐼3 

𝑚23 = 𝑚2𝑙2
2 + 𝑚2𝑙1𝑙2 cos(𝑞3) + 𝐼3 

𝑚33 = 𝑚2𝑙2
2 + 𝐼3 

 

𝐶(𝑞, �̇�) = [
𝑐11 𝑐12 0
𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 0
], 

 

𝑐11(𝑞, �̇�) = −2𝑚2[𝑙1 cos(𝑞2) + 𝑙2 cos(𝑞2 +
𝑞3)][𝑙1 sen(𝑞2) �̇�2 + 𝑙2 sen(𝑞2 + 𝑞3) (�̇�2 + �̇�3)]  

𝑐12(𝑞, �̇�) = −2𝑚1𝑙1 sen(𝑞2) cos(𝑞2) �̇�1   
 

𝑐21(𝑞, �̇�) = 𝑚2𝑙1
2 sen(𝑞2) cos(𝑞2) �̇�1 − 𝑚2[𝑙1 cos(𝑞2) +

𝑙2 cos(𝑞2 + 𝑞3)][−𝑙1 sen(𝑞2) − 𝑙2 sen(𝑞2 + 𝑞3)]�̇�1  

𝑐22(𝑞, �̇�) = −2𝑚2𝑙1 𝑙2sen(𝑞3) �̇�3   
𝑐23(𝑞, �̇�) = −𝑚2𝑙1 𝑙2sen(𝑞3) �̇�3   
𝑐31(𝑞, �̇�) = 𝑚2[𝑙1 cos(𝑞2) + 𝑙2 cos(𝑞2 + 𝑞3)][𝑙2 sen(𝑞2 +
𝑞3)]�̇�1   

𝑐32(𝑞, �̇�) = 𝑚2𝑙1 𝑙2sen(𝑞3) (�̇�2 + �̇�3)   

[

0
𝑔2(𝑞)

𝑔3(𝑞)
], 

 

𝑔2(𝑞) = [𝑚1𝑙1 cos(𝑞2) + 𝑚2𝑙1 cos(𝑞2) + 𝑚2𝑙2 cos(𝑞2 +
𝑞3)]𝑔   

𝑔3(𝑞) = [𝑚2𝑙2 cos(𝑞2 + 𝑞3)]𝑔   
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