
Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.10, Núm. 18. Año 2023

212

Autonomous Lane Tracking for an Ackermann-steering Robot

José Luis Pasarin, Jorge Dueñas, Jonathan Montoya, Alejandro Cibrian, Ulises Orozco-Rosas*, Kenia Picos

CETYS Universidad, Av. CETYS Universidad No. 4, El Lago, C.P. 22210, Tijuana B.C., Mexico

{joseluis.pasarin, jorge.duenas, jonathan.montoya, acibrian}@cetys.edu.mx, {ulises.orozco, kenia.picos}@cetys.mx

Resumen

Este artículo presenta la implementación de un vehículo autónomo con configuración de dirección Ackermann utilizando un sistema

de control PID para seguimiento de carril mediante procesamiento digital de imágenes. El robot de dirección Ackermann modifica

su ángulo de rotación frontal en función de los datos de la cámara, en los que se aplican filtros HSV y de contorno para definir los

límites de la pista y su centro. Se aplica un controlador PID para asegurar la incorporación del vehículo al carril en cada punto

del carril, utilizando la función de control para calcular la respuesta al error y modificar la orientación actual en consecuencia,

siendo el error la desviación del centro del carril. CoppeliaSim se utiliza para crear el entorno virtual del vehículo, proporcionando

una plataforma de simulación realista y eficiente para probar y evaluar el rendimiento del sistema de seguimiento de carril

propuesto. Además, se utiliza la programación en Python para implementar todas las funciones en la simulación, incluido el

procesamiento de imágenes, los cálculos del sistema de control y la comunicación con el entorno virtual en CoppeliaSim. Se

presentan resultados experimentales para evaluar la factibilidad de la implementación propuesta.

Palabras clave— Robot de dirección Ackermann, Vehículos autónomos, Controlador PID, Filtro HSV, Filtro de contorno

Abstract

This paper presents the implementation of an Ackermann-steering configuration autonomous vehicle using a PID control system for

lane tracking through digital image processing. The Ackermann-steering robot modifies its front rotation angle based on camera

data, on which HSV and contour filters are applied to define the limits of the track and its center. A PID controller is applied to

ensure the vehicle's incorporation into the lane at every point on the road, using the control function to calculate the error response

and modify the current orientation accordingly, with the error being the deviation from the lane's center. CoppeliaSim is used to

create the virtual environment of the vehicle, providing a realistic and efficient simulation platform for testing, and evaluating the

performance of the proposed lane tracking system. Additionally, Python programming is used to implement all the functions in the

simulation, including image processing, control system calculations, and communication with the virtual environment in

CoppeliaSim. Experimental results are presented to evaluate the feasibility of the proposed implementation.

Keywords— Ackermann-steering robot, Autonomous vehicles, PID controller, HSV filter, Contour filter

1. INTRODUCTION

For the past few years, Control Engineering has become quite

relevant due to the great benefits that can be obtained after

applying its principles in the development of projects. This is

because it allows the development of devices that can obtain

feedback from your system, thus reducing the errors obtained

in the output [1].

An example of the varied applications in which the

principles of Control Engineering are used is in the

development of autonomous vehicles, in which, as indicated

by its name, they are able to follow a trajectory autonomously

to reach a destination [2], [3]. However, for the elaboration of

these vehicles, it is necessary to have mastery of the tools that

allow the development of the necessary technology for its

operation, both hardware, and software [4].

In this work, a solution for this problem is sought by the

implementation of a proportional-integral-derivative (PID)

controller that receives information through a vision sensor

and the output provides the rim steering of the system. To this

end, the following objectives are proposed:

● Create an environment and system model virtually using

the simulation software CoppeliaSim.

● Design a mobile robot with Ackermann configuration

that is capable of performing lane following on a track

autonomously using a perspective vision sensor via

CoppeliaSim.

● Implement an algorithm that controls the direction of the

robot, allowing the robot to move within the trajectory of

a track created in the simulation environment. This

algorithm consists of two phases, the first being an image

processing phase, and the second a PID-type direction

controller with feedback.

To test the virtual environment, algorithms must be

integrated through the Python language that are implemented

in the robot simulation platform called CoppeliaSim, in which

the program will allow testing and correcting the automated

system of the mobile robot [5].

2. FUNDAMENTALS

In this section, we present a general description of the

concepts and algorithms employed in this work.

* Corresponding author: ulises.orozco@cetys.mx

mailto:joseluis.pasarin@cetys.edu.mx
mailto:jorge.duenas@cetys.edu.mx
mailto:jonathan.montoya@cetys.edu.mx
mailto:acibrian@cetys.edu.mx

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.10, Núm. 18. Año 2023

213

2.1 Autonomous vehicle

An autonomous vehicle is capable of moving without the

need for human intervention [2]. That is to say, it does not

need human action to intervene in the driving process as

usual. To get to this point, it is necessary to implement

hardware and software that allows the vehicle to detect its

environment [6].

2.2 Ackermann configuration

In addition to hardware and software, other aspects are taken

into account in autonomous vehicles, such as their kinematic

model. This refers to how the wheels of the vehicle are

configured so that it is possible to generate its movement [7].

One of the most used configurations in automobiles is the

Ackermann type, which is based on the fact that the front

wheels are the ones that control the direction, as seen in

Figure 1. In this way, when making a turn, the inner wheel

describes a greater angle than that of the outer wheel to avoid

slipping.

Figure 1. Internal (𝑅𝑖) and external (𝑅𝑜) radios are described by the

wheels of the vehicle with Ackermann configuration

Mathematically, the relationship between the angles of

the inner and outer wheels can be expressed by Equation 1.

𝑐𝑜𝑡(𝛼𝑜) − 𝑐𝑜𝑡(𝛼𝑖) =
𝑅 + 𝑏

𝑙
−
𝑅 − 𝑏

𝑙
=
2𝑏

𝑙
 (1)

In which 𝛼𝑜 is the angle of the external wheel, 𝛼𝑖 the

internal wheel angle, 𝑅 is the radius of instantaneous

curvature of the robot path, 𝑏 is the distance between the rear

wheels, and 𝑙 is the distance from the rear axle to the center

of the front wheels.

From a kinematic point of view, the Ackermann

configuration is similar to the tricycle configuration,

obtaining that the two front wheels of the Ackermann

configuration are equivalent to the front wheel of the tricycle

configuration, see Figure 2.

Mathematically, the relationship between the inner and

outer wheel angles of the Ackermann configuration and the

wheel angle of the tricycle configuration can be expressed by

Equation 2 and 3.

𝑐𝑜𝑡(𝛼𝑠𝑎) = 𝑐𝑜𝑡(𝛼𝑖) +
𝑏

𝑙
 (2)

The mathematical relationship between the angle of the

internal wheel of the Ackermann configuration and the angle

of the wheel of the tricycle configuration can be expressed by

Equation 2.

Figure 2. Kinematic model of the Ackermann configuration

equivalent to the tricycle configuration

The mathematical relationship between the angle of the

external wheel of the Ackermann configuration and the angle

of the wheel of the tricycle configuration can be expressed by

Equation 3.

𝑐𝑜𝑡(𝛼𝑠𝑎) = 𝑐𝑜𝑡(𝛼𝑜) −
𝑏

𝑙
 (3)

In which 𝛼𝑠𝑎 is the wheel angle of the tricycle

configuration. In the same way, within the elements that make

up an autonomous vehicle, the sensors are fundamentals.

2.3 Vision sensors

By definition, a sensor is a device capable of detecting the

presence and measurement of a physical or chemical quantity

[8]. These types of devices are often used in industry to

transform instrumentation variables (measured properties)

into electrical variables so that it is possible to work with

them. Various types of sensors are capable of measuring

variables such as temperature, force, speed, light intensity,

and humidity, among other variables.

In the case of an autonomous vehicle, vision sensors are

used since they are essential for controlling the direction and

movement of this type of vehicle. A vision sensor is an

element that is inside an electronic camera that is capable of

detecting and capturing the information of the image observed

by it [9]. Thus, it is responsible for converting light waves or

electromagnetic radiation into electrical signals using a

matrix of photodiodes or phototransistors, which are light-

sensitive electronic components [8]. In this way, an

autonomous vehicle can be able to observe its environment

and thereby make a decision about its speed and

displacement.

The categories of vision sensors can be divided into two

types: the orthogonal projection sensor and the perspective

projection sensor, see Figure 3. The first of them has a

rectangular field of view, which is why they are widely used

in short-range sensors such as infrared.

For this part, the perspective projection sensor is more

similar to the human eye or a regular camera, since its field of

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.10, Núm. 18. Año 2023

214

vision is trapezoidal, which is why they are used for camera

sensors.

Figure 3. Projection of the orthogonal sensor (left) and the sensor in

perspective (right)

2.4 PID controller

In systems engineering, a control system is a set of devices

that are responsible for ordering and regulating the behavior

of a system so that it provides the desired response and

eliminates errors [4].

One of the most used controllers in the industry due to its

simplicity and reliability is the PID controller, this is a

feedback control algorithm used in closed-loop systems,

which, as its name says, is proportional, integral, and

derivative, see Figure 4. This algorithm is based on three

different parameters; its proportional value that depends on

the current error, the integral that depends on the past error,

and the derivative that predicts the future error [10]. These

parameters are added, thus obtaining a result that is used to

adjust the process to be controlled.

Figure 4. PID controller block diagram

The PID controller offers a fast response as a whole

because it has a significant error signal compensation,

however, it tends to oscillate, and due to this, it is important

to adjust its parameters [11]. Equation 4 describes the PID

controller output function.

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒

𝑑𝑡
 (4)

3. METHODOLOGY

For the implementation of the proposed work, the Python

programming language was employed. The program

development process is detailed as follows.

3.1 Environment simulation implementation

For the environment simulation implementation, a

CoppeliaSim project was created, in which inside the scene of

the software a track made up of two lanes was designed.

The track was rectangular with circular edges, with two

long straight lines and two shorter straight lines, for this,

within the software two paths were created with the

established measurements, in addition to adding black color

and thickness to the generated lines, to facilitate the image

processing that our robot would have, see Figure 5.

Figure 5. Track implementation in the CoppeliaSim simulator

3.2 Mobile robot implementation

Subsequently, the configuration of the mobile robot was

carried out so that it could have manual control within the

track. To do this, what was done was to use a model provided

by CoppeliaSim, this being a vehicle with an Ackermann

configuration, see Figure 6. This model was chosen because

it already had the 3D design and the necessary programming

for its manual operation, from rear-wheel drive to front-angle

steering.

Figure 6. A vehicle with Ackermann configuration implemented in

the CoppeliaSim simulator

3.3 Vision sensor in mobile robot implementation

Following this, the implementation of the vision sensor was

carried out, which consists of a camera that is capable of

processing the image obtained for lane tracking, see Figure 7.

Figure 7. A vehicle with camera implemented in the CoppeliaSim

In this work, we chose to use the perspective projection

vision sensor because its field of vision (trapezoidal) proved

to be the most suitable for achieving lane tracking, this vision

being the one that most closely resembles the vision of a

human eye driver.

For this, a sensor provided by CoppeliaSim was

integrated, in which, once staged, the sensor only had to be

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.10, Núm. 18. Año 2023

215

paired and located next to the mobile robot, declaring its

location X, Y, and Z, as well as the angle of inclination that

this would have to achieve a better projection of the track, see

Figure 8.

Figure 8. Vision sensor projection in perspective

With this sensor, it is possible to obtain a two-

dimensional image with a great range both near and far,

observing both black lanes at all times.

3.4 Implementation of image processing algorithm.

To track the circuit through the rails, the image obtained by

the vision sensor had to be processed. For this, it was

necessary to connect the CoppeliaSim software with Python,

which was the programming language used to perform the

image processing. One of the tools used to achieve this was

OpenCV, which is a Python library that provides tools to

solve computer vision problems.

In this way, the first thing that was done was the

connection of the Python IDE with CoppeliaSim through

Code 1.

Code 1. Python connection with CoppeliaSim

####Conexión con CoppeliaSim###

#Finalizar todas las conexiones con el simulador
sim.simxFinish(-1)

#Iniciar una nueva conexión en el puerto 19999
(dirección por defecto)
clientID = sim.simxStart(‘127.0.0.1’, 19999, True,
True, 5000, 5)

#Comprobar que se haya podido conectar con CoppeliaSim
if clientID != -1
 #Si clientID es diferente a -1, la conexión es
exitosa
 print(‘CONEXION ESTABLECIDA’)
else:
 #En caso contrario, no se ha podido conectar
 sys.exit(‘ERROR AL CONECTARSE’)

Subsequently, the data from the vision sensor and the

motors of CoppeliaSim were extracted so that they could now

be controlled by the algorithm developed in Python, see Code

2.

Code 2. Extraction of vision sensor data and motors from

CoppeliaSim to be connected with Python

####Conexión de motores y sensor de visión###

#Guardar el handle del sensor de visión
error_cam, cámara = sim.simxGetObjectHandle(clientID,
‘Vision_sensor’, sim.simx_opmode_oneshot_wait)
error_izq, motor_izquierdo =
sim.simxGetObjectHandle(clientID,
‘nakedCar_motorLeft’, sim.simx_opmode_oneshot_wait)
error_der, motor_derecho =
sim.simxGetObjectHandle(clientID,
‘nakedCar_motorRight’, sim.simx_opmode_oneshot_wait)
error_eje_izq, eje_izq =
sim.simxGetObjectHandle(clientID,
‘nakedCar_steeringLeft’, sim.simx_opmode_oneshot_wait)
error_eje_der, eje_der =
sim.simxGetObjectHandle(clientID,
‘nakedCar_steeringRight’,
sim.simx_opmode_oneshot_wait)
If error_cam or (error_izq or error_der or
error_eje_izq or error_eje_der): sys.exit(‘ERROR AL
CONECTARSE’)

#Capturar un frame para activar el sensor
_, resolution, image =
sim.simxGetVisionSensorImage(clientID, camara, 0,
sim.simx_opmode_streaming)
time.sleep(1)

Following this, the image obtained by the vision sensor

was processed, using the Python OpenCV, see Code 3.

Code 3. Image processing using the Python OpenCV library

#Capturar un frame de la cámara del robot y guardar la
imagen y su resolución
_, resolución, image =
sim.simxGetVisionSensorImage(clientID, cámara, 0,
sim.simx_opmode_buffer)
img = np.array(image, dtype=np.unit8) #Convertir la
imagen en un array de numpy
img.resize([resolution[0], resolution[1], 3] #Cambiar
sus dimensiones
img = np.rot90(img, 2) #Rotarla 90 grados para
enderezarla
img = np.fliplr(img)

#Aplicar escala de grises, canny, blur y líneas
img2 = np.copy(img)
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(imgGray, (7,7), 0)
bordes = cv2.Canny(blur, 50, 200)
ref_linea = cv2.HoughLinesP(bordes, 2, np.pi/180, 20,
np.array([]), minLineLenght=40, lineasplus =
corregir(img2, ref_linea)
recta = Mostrar_lineas(img2, lineasplus)
imagenlines = cv2.addWeighted(img2, 0.8, recta, 1, 1)

3.3 PID controller implementation

Finally, the PID controller was implemented in Python,

which is used to control the steering of the vehicle, this allows

the robot to stay within the lane, see Code 4 for reference.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.10, Núm. 18. Año 2023

216

Code 4. PID controller implemented in Python

#Controlador PID
Kp = 0.2
Ki = 0.08
Kd = 0.3

error = posicion (img2, ref_lines) -160
print(error)
error_i =+ error
PID = Kp*error + Ki*(error_i) + Kd*(error-
error_anterior)
error_anterior = error

4. RESULTS

After implementing the advances obtained, it was possible to

obtain the simulation of a mobile robot with an Ackermann

configuration that is capable of autonomously following the

lane on a track using a perspective vision sensor and a PID-

type steering controller with feedback, thus fulfilling the

objectives of the work. As mentioned above, the implemented

PID controller allowed us to algorithmically manage the

behavior of the vehicle. The gain values listed in Table 1 for

the PID controller employed in this work were empirically

obtained by a series of trial-and-error to obtain the best

results.

Table 1. Gain values for the PID controller

Gain Value

𝐾𝑝 0.20

𝐾𝑖 0.08

𝐾𝑑 0.30

During testing, it was observed that the rendering speed

depended on the vehicle's speed, therefore it was decided to

maintain a lower speed to ensure accurate processing and

correction. With the set gain values for the PID controller, the

robot could follow a straight path with high accuracy and a

constant speed.

With the implementation of these gain values for the PID

controller the results in the straight path were very precise

with an appropriate speed, see Figure 9.

Figure 9. Simulation of the image processing of the sensor in

the straight path

When following a straight path, the PID controller's

implementation of the prescribed gain values has produced

good results in terms of accuracy and speed. The controller

produced movements with a high degree of accuracy while

maintaining a constant speed. This improvement is evidence

of the PID controller's efficiency. Figure 10 shows the vehicle

following a straight path.

Figure 10. The vehicle in the straight path

In the curved path, we also had good results, the reaction

was fast and accurate thanks to these PID gain values. Despite

losing the reference of a line, see Figure 11, it did not go off

the rail or lose control. It is important to emphasize that it

works in one way (a clockwise trip) or another (a

counterclockwise trip).

Figure 11. Simulation of the image processing of the sensor

in the curved path

When traversing along the curved path, the PID

controller has achieved a good level of precision and speed

thanks to the implementation of the set gain values shown in

Table 1. Figure 12 shows the vehicle following a curved path.

Figure 12. The vehicle in the curved path

Nevertheless, in Figure 13 it can be observed that there is

a difference in the output error between the curved path and

the straight path.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.10, Núm. 18. Año 2023

217

Figure 13. Error output graph, where the horizontal axis

represents the time in seconds and the vertical axis the error

in degrees

On average, the vehicle completed a full lap of the circuit

in 20 seconds without deviating from the rail or losing

control.

5. CONCLUSIONS

Throughout this work, it was possible to apply knowledge

from the Control Engineering area, as well as from other

areas, to process the image obtained and control the direction

of the mobile robot to follow the lane on the oval track

fulfilling the objectives of this work.

The knowledge and experience obtained throughout the

development of this work made it possible to obtain a PID

controller with an output capable of directing the movement

of the robot both in straight sections and in curves in both

directions.

Likewise, we hope that in the future we can apply the

knowledge that has been obtained in this work in other kind

of robot configurations like in applications self-driving cars,

exploration vehicles, unmanned aerial vehicles, and

autonomous underwater vehicles.

REFERENCES

[1] U. Orozco-Rosas, K. Picos and O. Montiel, "Hybrid

path planning algorithm based on membrane pseudo-

bacterial potential field for autonomous mobile

robots," IEEE Access, vol. 7, no. 1, pp. 156787-

156803, 2019.

[2] C. Bartneck, C. Lütge, A. Wagner and S. Welsh, An

Introduction to Ethics in Robotics and AI,

Christchurch, New Zealand: Springer, 2021.

[3] U. Orozco-Rosas, O. Montiel and R. Sepúlveda,

"Parallel Evolutionary Artificial Potential Field for

Path Planning—An Implementation on GPU," in

Design of Intelligent Systems Based on Fuzzy Logic,

Neural Networks and Nature-Inspired Optimization,

Studies in Computational Intelligence, vol 601,

Springer, 2015.

[4] A. Chouza, R. Hernandez, J. L. Jimenez and U.

Orozco-Rosas, "Navegación autónoma de un vehículo

aéreo por referencia visual," in Revista Aristas:

Investigación Básica y Aplicada, Tijuana, Mexico,

2020.

[5] U. Orozco-Rosas, O. Montiel and R. Sepúlveda,

"Mobile robot path planning using membrane

evolutionary artificial potential field," Applied Soft

Computing, vol. 77, pp. 236-251, 2019.

[6] U. Orozco-Rosas, K. Picos, J. J. Pantrigo, A. S.

Montemayor and A. Cuesta-Infante, "Mobile robot

path planning using a QAPF learning algorithm for

known and unknown environments," IEEE Access,

vol. 9, no. 1, pp. 101217-101238, 2022.

[7] R. Acharya and D. Jena, "Sampling based motion

planning of Ackermann steering system using

transformation," in IEEMA Engineer Infinite

Conference (eTechNxT), New Delhi, India, 2018.

[8] J. Kim, D. Han and B. Senouci, "Radar and Vision

Sensor Fusion for Object Detection in Autonomous

Vehicle Surroundings," in Tenth International

Conference on Ubiquitous and Future Networks

(ICUFN), Prague, Czech Republic, 2018.

[9] U. Orozco-Rosas, K. Picos, O. Montiel and O.

Castillo, "Environment Recognition for Path

Generation in Autonomous Mobile Robots," in Hybrid

Intelligent Systems in Control, Pattern Recognition

and Medicine, Studies in Computational Intelligence,

vol 827, Springer, 2020.

[10] T. Wang and C. Chang, "Hybrid Fuzzy PID Controller

Design for a Mobile Robot," in EEE International

Conference on Applied System Invention (ICASI),

Chiba, Japan, 2018.

[11] J. A. Rodriguez Olea, I. D. Leon Bon, U. Orozco-

Rosas and K. Picos, "Vehículo autónomo de

configuración Ackermann para seguimiento de carril

mediante procesamiento digital de imagen," in Revista

Aristas: Investigación Básica y Aplicada, Tijuana,

Mexico, 2020.

