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Resumen 

 

En la era contemporánea de los datos, la integración de 

sensores, dispositivos inteligentes y maquinaria para capturar 

datos relacionados con la producción se ha vuelto cada vez 

más prevalente entre las organizaciones. Si bien estos datos 

tienen el potencial de impulsar la modelización predictiva y 

mejorar los procesos de toma de decisiones, el volumen 

abrumador a menudo plantea desafíos en la construcción de 

modelos. Para abordar esto, la extracción de rasgos es una 

etapa fundamental en el pipeline de aprendizaje de máquina. 

Este artículo presenta Multi-channel Signal Tools, una 

paqueteria basada en Python diseñada para mejorar la 

extracción de rasgos en señales multi-canal dentro de los 

pipelines de aprendizaje de máquina. Para evaluar las 

características extraídas utilizando la herramienta propuesta, 

se procesaron datos del conjunto de datos EEG SEED_IV [1] 

y se desarrolló un clasificador de bosques aleatorios, en un 

escenario multi-clase, para el reconocimiento del estado 

emocional. A pesar de utilizar datos de solo 12 canales EEG, 

el clasificador logra resultados comparables a modelos más 

complejos que utilizan 62 canales y datos de movimiento 

ocular. Nuestros hallazgos subrayan la efectividad de las 

herramientas de programación propuestas para optimizar el 

procesamiento de señales multi-canal, mejorar la 

escalabilidad y facilitar el análisis de datos. Los resultados 

muestran el papel de la herramienta propuesta en el avance de 

las técnicas de extracción de rasgos y su impacto potencial en 

diferentes dominios. 

 

Palabras clave— Aprendizaje de máquina, Clasificación, 

EEG, Extracción de rasgos, Señales multi-canal. 

 

Abstract 

In the contemporary era of data, the integration of sensors, 

smart devices, and machinery for capturing production-

related data has become increasingly prevalent among 

organizations. While this data holds the potential to fuel 

predictive modeling and enhance decision-making processes, 

the sheer volume often poses challenges in model 

construction. Addressing this, feature extraction emerges as a 

pivotal stage in the machine learning pipeline.  This paper 

introduces Multi-channel Signal Tools, a Python-based 

framework aimed at enhancing feature extraction in multi-

channel signals within machine learning pipelines. To 

evaluate the features extracted using the proposed 

framework, we process data from the SEED_IV [1] EEG 

dataset and develop a random forest classifier, in a multi-

class scenario, for emotional state recognition. Despite 

utilizing data from only 12 EEG channels, the classifier 

achieves results comparable to more complex models using 

62 channels and eye movement data. Our findings underscore 

the effectiveness of the proposed programming framework in 

streamlining multi-channel signal processing, improving 

scalability, and facilitating insightful data analysis. The 

result show Multi-channel Signal Tools’ role in advancing 

feature extraction techniques and its potential impact across 

different domains. 

 

Keywords— Classification, EEG, Feature Extraction, 

Machine Learning, Multi-channel signals.  

 

1. INTRODUCTION 

 

Currently, we find ourselves in the so-called era of data, 

largely due to digital transformation and the development of 

new data capture and transfer technologies. Therefore, the 

paradigm of Industry 4.0 promotes the use of sensors, smart 

devices, and machines that enable organizations to 

continuously collect production-related data. This, in turn, 

allows for better management of their systems. Thus, 

organizations face both new opportunities and challenges, 

one of which is predictive analysis using computational tools 

capable of detecting patterns in data and making informed 

decisions. Moreover, constructing models that enable 

predictions and, consequently, better decision-making. It is in 

these needs that Artificial Intelligence (AI) and Machine 

Learning (ML) come into play. The objective of 

implementing ML tools in the industry is to automate 

processes to maximize efficiency, increase sustainability, 

improve supply chain management, and identify system 

barriers even before they occur [2, 3]. 

 

When a signal is generated by a single sensor or source, it is 

referred to as a single-channel signal. On the other hand, if a 

signal involves various sensors or sources, it is described as 

a multi-channel signal. An example of this type of signal is 

Electroencephalography (EEG) signals, composed of data 

from various electrodes according to the capturing device 

being used; in this case, the sensors are the same, capturing 

electrical activity in different regions of the brain [4, 5]. 

However, there are signals formed by different sensors, such 

as in the case of mechanical systems where data from 

vibration, temperature, humidity, noise sensors, among other 

relevant physical factors for the system under study, may be 

available [2, 6]. Due to the complexity of multi-channel 

signals, primarily stemming from the vast amount of data 

they contain, one of the fundamental stages in building a ML 

model is the feature extraction process. 

 

The process of constructing a ML model typically includes 

stages such as data acquisition, data cleaning, feature 
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engineering, model selection, training, validation, and testing 

[7]. Feature engineering involves the process of transforming 

raw data, sensor data, into a suitable format for building ML 

model, aiming to enhance their performance and predictive 

accuracy. It includes the extraction, modification, or selection 

of features, to provide an algorithm with more relevant and 

informative input. This process often requires domain 

knowledge and creativity to identify meaningful patterns, 

relationships, or interactions within the data. Feature 

engineering plays a crucial role in improving model 

interpretability, addressing data quality issues, handling non-

linear relationships, and adapting the data to meet the specific 

requirements of different ML algorithms. Feature extraction, 

in particular, plays a vital role in ML, involving the 

transformation of raw data into a condensed and relevant set 

of features. This technique reduces dimensionality, improving 

computational efficiency, mitigating noise, and enhancing 

model performance. By focusing on essential patterns, feature 

extraction contributes to better generalization, interpretability, 

and adaptability to algorithm requirements [8]. Overall, it is a 

vital step in optimizing data for effective modeling, leading to 

more efficient and accurate ML applications. 

 

In this context, this paper introduces Multi-channel Signal 

Tools (MCST), a Python-based programming framework 

designed to facilitate the processing of multi-channel signals 

and extraction of features in both the time and frequency 

domains. The aim is to streamline the feature extraction 

process within the ML pipeline. These tools were employed 

to preprocess data from the SEED_IV EEG dataset [1], and 

the resulting features were utilized to develop a random forest 

classifier, yielding results comparable to those in the state-of-

the-art. 

 

 

2. METHODS 

 

The MCST framework encompasses three primary stages for 

feature extraction. Firstly, signal splitting enables users to 

segment the signal into time windows for subsequent 

processing. Secondly, in the core stage of feature extraction, 

MCST offers methods for extracting features in both the time 

and frequency domains. Lastly, for storing the features, the 

framework provides tools to save the resulting data into files 

for future use in the ML pipeline. 

 

 

2.1 Singal split 

This method separates an input signal into time windows, it is 

common for the data capture of multi-channel signals to occur 

continuously over extended periods of time—minutes, hours, 

days. However, it's also typical to aim for building learning 

models that operate on considerably smaller samples of these 

signals. In this regard, the split_cvs tool allows for the 

segmentation of an input signal into smaller time windows. 

For this purpose, the input signal, the frequency at which it 

was captured, and the desired size in seconds of the time 

windows for feature extraction are required. 

 

2.2 Feature extraction 

The primary functionality of the framework is feature 

extraction in both the time and frequency domains. MCST 

enables the extraction of features from a single channel and 

features that combine data from two channels using 

asymmetry. The features extraction implements the operators 

describe in [5]. We define 𝜉(𝑡) ∈ ℝ𝑇 as the vector containing 

the time series from a single channel, where 𝑇 is the number 

of samples in 𝜉. The time derivative is represented as 𝜉̇(𝑡). 

 

Time domain features 

The first set of time domain features are statistical features: 

defined as follows: 

• Power: 

 𝑃𝜉 =
1

𝑇
Σ−∞

∞  | 𝜉(𝑡)|2    [1] 

• Mean: 

 𝜇𝜉 =
1

𝑇
Σ𝑡=1

𝑇  𝜉(𝑡)    [2] 

• Standard Deviation: 

 𝜎𝜉 = √
1

𝑇
Σ𝑡=1

𝑇 (𝜉(𝑡) − 𝜇𝜉)
2
    [3] 

• 1st difference: 

 𝛿𝜉 =
1

𝑇−1
Σ𝑡=1

𝑇−1  |𝜉(𝑡 + 1) − 𝜉(𝑡)|   [4] 

• Normalized 1st difference: 

 𝛿�̅� =
𝛿𝜉

𝜎𝜉
     [5] 

• 2nd difference: 

 𝛾𝜉 =
1

𝑇−2
Σ𝑡=1

𝑇−2|𝜉(𝑡 + 2) − 𝜉(𝑡)|  [6] 

• Normalized 2nd difference: 

 𝛾𝜉 =
𝛾𝜉

𝜎𝜉
     [7] 

 

The Power 𝑃𝜉  features represent the strength of the signal or 

consumed energy per unit of time. The mean 𝜇𝜉 and standard 

deviation 𝜎𝜉  features are statistical moments of the signal. 

The 1𝑠𝑡 and 2𝑛𝑑 differences describe the changes of a signal 

over time and the normalized 1𝑠𝑡 difference is used to 

quantify the self-similarities contained in a signal. 

 

MCST considers additional time domain features such as 

Hjorth features described in [9]: Activity, which describes the 

variance of the signal; Mobility, is the standard deviation of 

the slope of the signal using the standard deviation of the 

amplitude as reference; and finally, Complexity, which 

measures the variation of the signal using a smooth curve as 

reference. These features are calculated as follows:   

• Activity: 𝐴𝜉 =  
Σ𝑡=1

𝑇 (𝜉(𝑡)−𝜇𝜉)
2

𝑇
  [8] 

 

• Mobility: 𝑀𝜉 = √
𝑣𝑎𝑟(�̇�(𝑡))

𝑣𝑎𝑟(𝜉(𝑡))
  [9] 

 

• Complexity: 𝐶𝜉  =
𝑀(�̇�(𝑡))

𝑀(𝜉(𝑡))
   [10] 
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where 𝜉̇(𝑡) represents the first derivative of 𝜉(𝑡) with respect 

to time.  

Another time feature in MCST is the Non-Stationary Index 

(NSI) proposed in [10]. The NSI is based on the variation of 

different segments of the signal over time. A stationary signal 

is one whose statistical properties, such as mean, variance, and 

autocorrelation, remain constant over time. In contrast, a non-

stationary signal exhibits variations in its statistical properties 

over time. This feature is calculated by dividing the signal 𝜉 

into small segments and the mean 𝜇𝑖 for each segment is 

calculated. The NSI is defined as the standard deviation of the 

segments' means. In this way, as this index increases, the 

signal is considered as “less stationary”. 

 

The last time domain features included in MCST are the 

Higher Order Crossings (HOC) proposed in [11]. The 

objective of this features is to characterize the oscillatory 

nature of a signal. They are calculated by a sequence of high-

pass filters applied over a zero-mean time series 𝑍(𝑡) as 

follows: 

ℑ𝑘{𝑍(𝑡)} = ∇𝑘−1𝑍(𝑡) [11] 

where ∇𝑘 is the backward difference operator with order 𝑘 =
1, . . ,10. The resulting 𝐷𝑘 features are defined by counting the 

number of sign changes in the processed signal 𝑍(𝑡). There is 

a total of 10 HOC features, that together with the Hjorth 

features, the NSI and the statistical features previously 

described, it results in a total of 21 time domain features that 

can be extracted from a single channel. Note that these 

features can be extracted from each of the channels 

independently.  

 

Frequency features  

Fourier analysis stands out as a widely adopted method in 

signal processing. This is because it excels in pinpointing 

narrowband elements within a signal, enabling a detailed 

characterization of its components. The prevalent frequency 

characteristics typically involve power features obtained from 

various frequency ranges. These features are derived from the 

power spectrum or band power, denoted as 𝑃(𝑢), of the signal 

𝜉(𝑡). The band power is calculated using the Fourier 

Transform, where 𝑃(𝑢) = |𝐹(𝑢)|2 is determined by the 

square of the magnitude of the frequency spectrum |𝐹(𝑢)|. 
The frequency bands considered in MCST, listed in Table 1, 

are taken from the analysis of electroencephalogram (EEG) 

signals such as the one described in [4, 12].  

 
Table 1 EEG Frequency band for feature extraction  

Bandwidth (Hz) Band name 

1-4 𝛿 

4-8 𝜃 

8-10 𝑠𝑙𝑜𝑤 𝛼 

8-12 𝛼 

12-30 𝛽 

30-64 𝛾 

 

These ranges may vary depending on the specific field. 

However, it is assumed that the features remain constant over 

time. Following the methodology outlined in [12], these 

features are derived using the Short Time Fourier Transform 

(STFT), employing a one-second Hamming window without 

any overlap. From the resulting segments, the mean power, 

minimum, maximum, and variance are extracted as features. 

This is done for each frequency bands listed in Table 1. Then, 

the alpha-beta ratio is calculated with the band power ration 

between bata and alpha 𝛽/𝛼. Finally, the Differential Entropy 

feature proposed in [13] is computed for each frequency 

bands. A total of 31 frequency features are extracted from a 

single channel. Similar to the time domain, these features can 

be extracted for each channel independently. 

 

Asymmetry features  

The features outlined previously are computed using a single 

channel. However, examining two or more channels 

simultaneously may reveal descriptive features that elucidate 

the relationship between data captured by distinct sensors, 

potentially from diverse regions within the system under 

study. To prevent an explosion of potential features, MCST 

focuses on implementing binary features, utilizing signals 

from two channels simultaneously to derive them. Hence, 

asymmetry features are defined by combining information 

from pairs of channels. The features are evaluated using these 

channel pairs include differential asymmetry and rational 

asymmetry. The former is calculated as the difference 

between features derived from the signals of independent 

channels 'r' and 'l', given by: 

𝛿𝑥 =  𝑥𝑙 − 𝑥𝑟   [12] 

where 𝑥𝑢 is a feature, computed from the signal of channel 𝑢. 

Similarly, rational asymmetry is computed as: 

Δ𝑥 =
𝑥𝑙

𝑥𝑟
  [13] 

Asymmetry features are derived from both statistical features 

in the time domain and all frequency features, resulting in a 

comprehensive set of 74 asymmetry features per pair of 

channels.  

 

In this context, MCST enables the extraction of a total of 52 

features from a single channel and 74 features from a pair of 

channels. This process can be applied selectively to a subset 

of channels within the entire input. 

 

3. EXPERIMENTS AND RESULTS 

 

To demonstrate the effectiveness of the proposed features in 

constructing a predictive model, MCST was applied to the 

data from the SEED_IV dataset. This dataset is a collection 

of signal recordings, captured during a visual emotion 

induction experiment. It consists of EEG signals captured 

from participants while they were exposed to various 

emotional stimuli, mainly videos, designed to provoke a 

certain emotion in the individuals. The dataset includes 

annotations indicating the emotional states experienced by 

the participants during the task. It is commonly used in 
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research for developing ML models to classify emotional 

states based on EEG data. 

 

3.1 SEED_IV dataset 

The SEED_IV dataset, as described in [1], comprises signals 

recorded from 62 electrodes and emotional neurofeedback 

tests. These tests aim to establish correlations between the 

recorded signals and specific emotional states. The dataset 

captures emotional responses from 15 participants exposed to 

24 videos, of approximately 120 second, carefully selected to 

elicit neutral, happy, sad, and fearful emotional reactions. This 

protocol was repeated across three separate sessions, resulting 

in a total of 1,080 sets of signals collected from the 62 

electrodes. To ensure consistency, EEG signals were down 

sampled to 200Hz and filtered within the range of 1 to 75Hz. 

Each trial of the evoked potential was categorized based on 

the elicited emotional state: neutral, happy, sad, or fear.  

 

3.2 Processing with MCST 

Initially, the signals underwent segmentation into 10-second 

intervals to try to identify emotions within that timeframe. It 

is postulated that each segment of the signal portrays the same 

emotional expression observed in the complete signals. This 

resulted in approximately 80 observations of each emotion per 

subject per session.  Subsequently, drawing on findings from 

[5] demonstrating that signals from just 12 electrodes suffice 

to distinguish between EEG signals of different emotions, 

features were extracted from these specific electrodes, as 

illustrated in Figure 1 Selected electrodes for feature 

extractionFigure 1. Consequently, for each set of EEG signals 

associated with its respective emotion, a total of 1,068 features 

were extracted. This comprised 21 time-domain and 31 

frequency-domain features for each of the 12 individual 

channels, along with 74 features from each of the 6 pairs of 

asymmetrical electrodes.  

 
Figure 1 Selected electrodes for feature extraction 

 
Source: imagen taken from [14] 

3.3 Classification 

To assess the efficacy of the extracted features in constructing 

machine learning models, we followed the experimental setup 

outlined in [1]. This involved establishing a 4-class 

classification problem within a subject- and session-

dependent context, resulting in 45 distinct experiments across 

the 15 subjects and their 3 sessions each. We employed a 

Random Forest (RF) classifier using scikit-learn, utilizing 

500 estimators and default configurations for the remaining 

parameters, and incorporating all 1068 extracted features. To 

evaluate the classifier's performance, we conducted a 10-fold 

cross-validation procedure. The average classification 

accuracy per session is presented in Table 2. 

 
Table 2 Classification accuracy (%) average per session 

Session 1 2 3 All 

Mean 72.99 73.64 79.61 75.41 

Std 8.55 9.84 8.58 9.49 

   

Figures 2-4 display the confusion matrices corresponding to 

each session. These matrices represent the cumulative testing 

results across the 10 folds in the evaluation process.  

 
Figure 2 Confusion matrix for session 1 

 
 

Figure 3 Confusion matrix for session 2 
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Figure 4 Confusion matrix for session 3 

 
 

Then, Figure 5 illustrates the confusion matrix across the 45 

experiments. It is evident that the RF classifier finds it easier 

to recognize the neutral emotion, while signals captured 

during instances of induced happiness prove to be more 

challenging to differentiate.  

 
Figure 5 Overall confusion matrix 

 
In our pursuit of enhancing the classification accuracy of the 

model, we opted to integrate a feature selection step as a 

filtering approach. This involved implementing a Kernel 

Principal Component Analysis (KPCA) operator with a 

Radial Basis Function (RBF) kernel. Utilizing scikit-learn, we 

conducted the operation to identify the optimal 50 

components for classification. Once more, we utilized a RF 

classifier, evaluating it across the 45 experiments via a 10-fold 

cross-validation approach. We then compared the results of 

our proposed model with those described in [1], where the 

authors introduced various methods. These methods include a 

model constructed solely using eye movement to classify 

emotions, another utilizing EEG signals, a third leveraging 

data from both EEG and eye movement (referred to as Feature 

Fusion), and finally, a multimodal deep neural network 

(DNN) incorporating both data sources. The comprehensive 

comparison of overall classification accuracy between the 

proposed model and these methods is detailed in Table 3. 

 
Table 3 Overall classification accuracy (%) performance 

comparison  

Method Eye EEG Feat 

Fusion 

DNN MCST-

RF 

Mean 67.82 70.33 75.88 85.11 85.22 

Std 18.04 14.45 16.44 11.79 5.66 

Source: results reported in [1] and the proposed method 

   

 

Figure 6 illustrates the confusion matrix across the 45 

experiments. These results indicate that the neutral emotion 

is the most easily distinguishable, whereas signals 

representing a fearful emotional reaction appear to be more 

challenging to differentiate. These findings underscore the 

importance of feature engineering, as they demonstrate that 

using the using the right set of features, a straightforward off-

the-shelf model achieves comparable performance to more 

complex models such as deep neural networks. 

 
Figure 6  Confusion matrix over the 45 experiments using KPCA 

for feature selection  

 
 

 

 

4. CONCLUSIONS AND FUTURE WORK 

This paper addresses the challenge of feature extraction in 

signals for constructing predictive models. By introducing 

the Multi-channel Signal Tools (MCST) framework and 

harnessing its capabilities, we have enhanced the feature 

extraction process for multi-channel signals within a machine 

learning pipeline. Through processing data from the 

SEED_IV EEG with MCST, we have successfully developed 

a random forest classifier that achieves results comparable to 

more sophisticated models in classifying emotional states, 

and using less data while we implement data from 12 

channels, the DNN model uses the 62 channels and eye 

movement data.  
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Furthermore, our findings highlight the significance of 

leveraging computational tools such as MCST to facilitate the 

processing of multi-channel signals. This not only enhances 

the scalability and effectiveness of feature extraction but also 

empowers researchers and practitioners to extract meaningful 

insights from complex data sources. 

 

As future work, it is imperative to address more complex 

versions of the problem, such as session-independent and/or 

subject-independent formats. Additionally, considering other 

evaluation scenarios like leave-one-subject-out, which is a 

common practice for processing biomedical data, would be 

beneficial. Furthermore, there is a need to evaluate MCST 

over other signal sources, such as industrial sensors, for fault 

detection in machinery. These efforts will contribute to a 

deeper understanding of the capabilities of MCST and its 

potential applications across different domains. 
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