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Resumen 

El desarrollo masivo del internet de las cosas (IoT), Big Data 

y otras tecnologías ha generado preocupaciones de seguridad 

con respecto a la protección de datos. Se ha vuelto imperativo 

desarrollar soluciones para proteger nuestros datos, como 

imágenes, textos y audios, del acceso no autorizado. Este 

trabajo presenta un esquema de transmisión de imágenes 

cifradas basado en una configuración dinámica caótica de dos 

atractores caóticos esféricos sincronizados de 3 dimensiones 

en una topología maestro-esclavo. Sincronizamos la 

evolución futura de los sistemas caóticos comenzando con 

diferentes condiciones iniciales utilizando el enfoque basado 

en observadores hamiltonianos y luego utilizamos los puntos 

del espacio de fase resultantes como números 

pseudoaleatorios para asegurar la imagen transmitida a través 

del canal de comunicación. El esquema diseñado se realiza e 

implementa en la plataforma Multiprocessor System-on-Chip 

(MPSoC) aprovechando las funciones de programación 

fáciles y sintetizables de Python con MPSoC. La imagen se 

transmite a través de las variables de estado x1, x2 y x3 y se 

analiza utilizando dos técnicas estadísticas, a saber, entropía 

de información y análisis de correlación, donde el resultado 

muestra la recuperación completa de la imagen que se 

transmitió a través de las variables de estado. 

 

Palabras clave— Caos, FPGA, MPSoC, Comunicación 

Segura, Python. 

 

Abstract 

The massive development of internet of things (IoT), Big Data 

and other technologies has led to security concerns with 

respect to data protection. It has become imperative to 

develop solutions to protect our data, such as images, texts, 

and audios from unauthorized access. This work presents an 

encrypted image transmission scheme based on a chaotic 

dynamic configuration of two synchronized spherical chaotic 

attractors of 3 dimension in a master-slave topology. We 

synchronized the future evolution of the chaotic systems 

starting with different initial conditions using the Hamiltonian 

observer-based approach and then utilized the resulting 

phase space points as the pseudo-random numbers for 

securing image transmitted through the communication 

channel. The scheme designed is realized and implemented on 

the Multiprocessor System-on-Chip (MPSoC) platform by 

harnessing the easy and synthesizable programming features 

of Python with MPSoC. The image is transmitted through the 

state variables x1, x2, and x3, and analyzed using the two 

statistical techniques namely, information entropy and 

correlation analysis where the result shows the full recovery 

of the image that was transmitted through the state variables. 

 

Keywords— Chaos, FPGA, MPSoC, Secure Communication, 

Python. 

 

1. INTRODUCTION 

 

Since the creation of the Lorenz chaotic system, researchers 

in chaos theory have worked extensively to develop various 

chaotic systems for generating and applying chaos. 

Nowadays, chaos has become a multidisciplinary research 

area, which has been widely applied in communications, 

robotics, security, medicine, so on. 

In today’s digital landscape, the secure transmission of 

sensitive information, particularly within real-time image 

processing systems, is imperative. Image data often harbors 

private and confidential information, underscoring the 

necessity to safeguard it from unauthorized access and 

interception. With the escalating volume of image data shared 

across networks, communication channels, social media, big 

data, and the Internet of Things (IoT), implementing 

algorithms that ensure confidentiality and privacy has 

become a critical challenge. Traditional image transmission 

methods are vulnerable to interception and unauthorized 

access, exposing the data to potential breaches and 

compromising sensitive information. 

Chaos-based communication hinges on the synchronization 

of chaotic oscillators, acting as the backbone of the system 

[1]. Achieving synchronization between the chaotic 

transmitter and receiver is pivotal for information 

transmission. Various synchronization schemes, such as 

Pecora and Carroll, Ott-Grebogi-Yorke (OGY), Hamiltonian 

forms, observer approach, open-plus-close-loop, and others, 

contribute to this endeavor. [2] The synchronization of two 

chaotic attractor systems in a master-slave topology 

represents a significant contribution made by this paper [3].   

 

2. 3D SPHERICAL CHAOTIC ATTRACTOR 

 

In the investigation done by the authors in [4], a smooth 

quadratic autonomous chaotic system was proposed from an 

earlier system constructed in [5] based on the Shilnikov 

criterion. The Shilnikov criterion is an analytic method for 

proving chaos in nonlinear dynamical systems [6, 7]. It 

consists of two theorems, which give a theoretical foundation 

for classification of chaos. One theorem is based on the 

presence of heteroclinic orbit while the other is based on the 

existence of homoclinic orbit. 

Consider a third-order autonomous system of the form: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥),     𝑥 ∈  𝑹3,     𝑡 ∈  𝑹                     (1) 

where the vector field f(x): R3 →R3 is r-times differentiable 

(k ≥ 1) with a continuous derivative Ck. Let xe ∈R3 be an 

equilibrium point of system (1), then xe is called a saddle 
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focus if the eigenvalues of the Jacobian J of f(x) evaluated at 

xe are of the form 

 𝜆1 = 𝛼,   𝜆2,3 = 𝛽 ± 𝑖𝛾,      𝛼𝛽 < 0,     𝛾 ≠ 0       (2) 

where α, β and γ are real. 

Theorem 1 (Shilnikov Homoclinic theorem) [8]: For a 3D 
autonomous system (1), let xe be a saddle focus equilibrium 
point whose eigenvalues satisfy |α| > |β| > 0, there exists a 
homoclinic orbit connected at xe. Then the 3D autonomous 
system has horseshoe chaos. 

Theorem 2 (Shilnikov Heteroclinic theorem) [8]: Suppose that 
two distinct equilibrium points 𝑥𝑒

1 and 𝑥𝑒
2 of a 3D autonomous 

system (1) are saddle foci, whose eigenvalues at these points 
are αn and βn ± iγn (n = 1, 2), satisfy the Shilnikov inequality 
|αn| > |βn| > 0, n = 1, 2, under the constraint β1β2 > 0 or α1α2 
> 0. Suppose also that there exists a heteroclinic orbit 
connecting 𝑥𝑒

1 and 𝑥𝑒
2. Then the 3D autonomous system has 

horseshoe chaos. 

According to the authors, the chaotic system in [4] can display 
a 3-layer attractor. The 3D spherical chaotic system is 
perturbed by a hyperbolic tangent function as given in (3).  

�̇� = 𝑎1𝑥 − 𝑎2𝑦 + 𝑎3𝑧 + 2 (
1−exp(−200 sin 𝑦)

1+exp(−200 sin 𝑦)
)

�̇� = −𝑑𝑥𝑧 + 𝑏 + 𝑒𝑥
�̇� = 𝑐1𝑥𝑦 + 𝑐2𝑦𝑧 + 𝑐3𝑧 + 𝑐

       } () 

where ai ≠ 0, ci ≠ 0 (1 ≤ i ≤ 3), d ≠ 0, b ≠ 0, and c ≠ 0 are all 

real parameters. At a1= -4.1, a2 = 1.2, a3 = 13.45, c1 =2.76, c2 

= 0.6, c3 = 13.13, c = 3.5031, d = 1.6, and e = 0, the system in 

(3) has only one equilibrium point (x, y, z) = (0.7217, -2.5698, 

0.1394), which is chaotic. The associated eigenvalues are (λ1, 

λ2, λ3) = (3.7747+6.0632i, 3.7747-6.0632i, -0.0612). The 

Lyapunov exponents corresponding to this chaotic state are 

(LE1, LE2, LE3) = (0.041, 0, -0.117).  
The phase diagrams, plotted with data of last 100 secs to 
remove transient states, are shown in Fig. 1 below. In this 
work, 4th-order Runge-Kutta numerical method, with fixed 
step-size h = 0.001, was applied to perform all numerical 
integrations. Except specifically stated, the initial conditions 
were (x0, y0, z0) = (-0.04, -15.8, -1.4) and the system parameter 
values are as stated above.  

Fig 1. Phase space portrait of 3D-spherical chaotic system. 

 

3. MASTER-SLAVE SYNCHRONIZATION USING 

HAMILTONINAN FORM AND OBSERVER 

APPROACH 

 
In this investigation, the Hamiltonian system and observer 
approach [9] was applied to synchronize two chaotic 
oscillators of system (3) in a master-slave topology. In this 
way, the slave system serves as the observer of states, meaning 
that the state variables of the slave system will approximate 
the master. Mathematically, the master and slave of a 
dynamical system are expressed in Hamiltonian form as 
follows. Consider a dynamical system of the form: 

 �̇� = 𝑓(𝑥) (4) 

where �̇� ∈ 𝑅𝑛 is the state variable and 𝑓: 𝑅𝑛  → 𝑅𝑛 is the 
nonlinear function. 

The dynamical system can be written also as: 

 �̇� = 𝐴
∂𝐻

∂𝑥
+ ℱ(𝑥) (5) 

where 𝐴 =
𝐴−𝐴𝑇

2
+

𝐴+𝐴𝑇

2
. Therefore, 

 �̇� =
𝐴−𝐴𝑇

2

∂𝐻

∂𝑥
+

𝐴+𝐴𝑇

2

∂𝐻

∂𝑥
+ ℱ(𝑥) (6) 

Let 𝒥(𝑥) =
𝐴−𝐴𝑇

2
 and 𝒮(𝑥) =

𝐴+𝐴𝑇

2
, hence (4) can be written 

in the Generalized Hamiltonian canonical form as follows: 

 �̇� = 𝒥(𝑥)
𝜕𝐻

𝜕𝑥
+ 𝒮(𝑥)

𝜕𝐻

𝜕𝑥
+ ℱ(𝑥),     𝑥 𝜖 𝑅𝑛 (7) 

where 𝐻(𝑥) =
1

2
𝑥𝑇Mx denotes a positive smooth energy 

function definite in Rn, M is a constant, symmetric positive 

definite matrix, and hence, 
∂𝐻

∂𝑥
 = Mx. 

∂𝐻

∂𝑥
 is the column gradient 

vector of H(x), while matrix 𝒥(x) satisfies 𝒥(𝑥) + 𝒥𝑇(𝑥) =
0 and 𝒮(𝑥) satisfies 𝒮(𝑥) = 𝒮𝑇(𝑥) for all 𝑥 ϵ 𝑅𝑛 . The vector 

field 𝒥(𝑥)
𝜕𝐻

𝜕𝑥
 exhibits the conservative part and 𝒮(𝑥) 

represents the nonconservative part of the system. 

In the case of the observer design approach, a special class of 
the Generalized Hamiltonian forms with destabilizing vector 
field and output y(t), which is the master system, is given by: 

 {
�̇� = 𝒥(𝑦)

𝜕𝐻

𝜕𝑥
+ 𝒮(𝑦)

𝜕𝐻

𝜕𝑥
+ ℱ(𝑦),     𝑥 𝜖 𝑅𝑛

𝑦 = 𝒞
𝜕𝐻

𝜕𝑥
,          𝑦 𝜖 𝑅𝑚

 (8) 

where 𝒮 is a constant symmetric matrix and 𝒞 is a constant 
matrix. 

Similarly, the dynamical nonlinear state observer, the slave 
system, is defined as follows. The estimate of the state vector 

x is denoted by ξ̇ and the estimated output is denoted by η. 
Thus, the slave system is: 
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 {
ξ̇ = 𝒥(𝑦)

𝜕𝐻

𝜕𝜉
+ 𝒮(𝑦)

𝜕𝐻

𝜕ξ
+ ℱ(𝑦) + 𝒦𝑒𝑦,     ξ 𝜖 𝑅

𝑛

𝜂 = 𝒞
𝜕𝐻

𝜕ξ
,      𝜂 𝜖 𝑅𝑚

 (9) 

where 𝒦is the gain of the observer and 𝑒𝑦 = 𝑦 −  η is the 

output estimation error. The state estimation error is defined by 
𝑒 = 𝑥 − ξ. 

The synchronization by Hamiltonian systems is considered 
successful according to the following definition and theorems. 

Definition 1 [10]: The basic condition for the slave to 
synchronize with the master in Hamiltonian form is when: 

 lim
t→∞

‖𝑥(𝑡) − ξ(𝑡)‖ = 0 (10) 

regardless of what the initial conditions 𝑥(0) and ξ(0) are. 

Theorem 3 [10]: The state x of the nonlinear system in (8) can 
be globally, exponentially, and asymptotically estimated by the 
state 𝜉 of the nonlinear observer (9) if the pair of matrices 
(𝒞, 𝒮) are observable. 

Theorem 4 [10]: The state x of the nonlinear system in (8) can 
be globally, exponentially, and asymptotically estimated by the 
state 𝜉 of the nonlinear observer (9) if and only if there exists 
a constant matrix 𝒦 such that the symmetric matrix. 

 [𝑊 − 𝐾𝐶] + [𝑊 − 𝐾𝑇]𝑇 = [𝑆 − 𝐾𝐶] + [𝑆 − 𝐾𝐶]𝑇 = 2 [𝑆 −
1

2
(𝐾𝐶 + 𝐶𝑇𝐾𝑇)]  (11) 

is negative definite. 

Therefore, the master system is constructed as follows: 

 𝒥(𝑥) =

[
 
 
 
 0

−𝑎2−𝑒

2

𝑎3

2
𝑎2+𝑒

2
0

−𝑐1𝑥−𝑑𝑥

2

−
𝑎3

2

𝑐1𝑥+𝑑𝑥

2
0 ]

 
 
 
 

 (12) 

 𝒮(𝑥) =

[
 
 
 
 𝑎1

−𝑎2+𝑒

2

𝑎3

2
−𝑎2+𝑒

2
0

𝑐1𝑥−𝑑𝑥

2
𝑎3

2

𝑐1𝑥−𝑑𝑥

2
𝑐2𝑦 + 𝑐3]

 
 
 
 

 (13) 

 ℱ(𝑥) = [
2 (

1−𝑒−200𝑠𝑖𝑛𝑦

1+𝑒−200𝑠𝑖𝑛𝑦)

𝑏
𝑐

] (14) 

According to (8), 

 [
�̇�
�̇�
�̇�

] =

[
 
 
 
 0

−𝑎2−𝑒

2

𝑎3

2
𝑎2+𝑒

2
0

−𝑐1𝑥−𝑑𝑥

2

−
𝑎3

2

𝑐1𝑥+𝑑𝑥

2
0 ]

 
 
 
 

𝜕𝐻

𝜕𝑥
+

[
 
 
 
 𝑎1

−𝑎2+𝑒

2

𝑎3

2
−𝑎2+𝑒

2
0

𝑐1𝑥−𝑑𝑥

2
𝑎3

2

𝑐1𝑥−𝑑𝑥

2
𝑐2𝑦 + 𝑐3]

 
 
 
 

𝜕𝐻

𝜕𝑥
+ [

2 (
1−𝑒−200𝑠𝑖𝑛𝑦

1+𝑒−200𝑠𝑖𝑛𝑦)

𝑏
𝑐

] (15) 

where  

𝐻(𝑥) =
1

2
[𝑥2 + 𝑦2 + 𝑧2] and the gradient vector is 

𝜕𝐻

𝜕𝑥
= [

𝑥
𝑦
𝑧
].  

The manipulation of (15) resulted in the following master 
system in (16). 

 [
�̇�
�̇�
�̇�

] = [

𝑎1𝑥 − 𝑎2𝑦 + 𝑎3𝑧
−𝑑𝑥𝑧 + 𝑒𝑥

−𝑐1𝑥𝑦 + 𝑐2𝑦𝑧 + 𝑐3𝑧
] + [

2 (
1−𝑒−200𝑠𝑖𝑛𝑦

1+𝑒−200𝑠𝑖𝑛𝑦)

𝑏
𝑐

] (16) 

Similarly, for the slave system and according to (9), 

 [

ξ1̇

ξ2̇

ξ3̇

] =

[
 
 
 
 0

−a2−e

2

a3

2
a2+e

2
0

−c1x−dx

2

−
a3

2

c1x+dx

2
0 ]

 
 
 
 

∂H

∂ξ
+

[
 
 
 
 a1

−a2+e

2

a3

2
−a2+e

2
0

c1x−dx

2
a3

2

c1x−dx

2
c2y + c3]

 
 
 
 

∂H

∂ξ
+ [

2 (
1−e−200siny

1+e−200siny)

b
c

] + [

k1

k2

k3

] ey

 (17) 

Upon simplification, the receiver dynamics (17) becomes 
(18). 

 [

𝑦1̇

𝑦2̇

𝑦3̇

] = [

𝑎1𝑥 − 𝑎2𝑦 + 𝑎3𝑧
−𝑑𝑥𝑧 + 𝑒𝑥

−𝑐1𝑥𝑦 + 𝑐2𝑦𝑧 + 𝑐3𝑧
] + [

2 (
1−𝑒−200𝑠𝑖𝑛𝑦

1+𝑒−200𝑠𝑖𝑛𝑦)

𝑏
𝑐

] +

[

𝑘1

𝑘2

𝑘3

] 𝑒𝑦 (18) 

The gains of the observer selected according to Theorem 4 
were k1 = 2, k2 = 7, and k3 = 5. The initial condition for the 
master and slave systems were [-0.04, -15.8, -1.4] and [-0.12, 
-12.41, -2.1], respectively.  

The synchronization errors of the master-slave system are 
e1=x1-y1, e2=x2-y2, e3=x3-y3, where xi represents the master 
while yi denotes the slave. The master and slave systems were 
synchronized within a very short time after which the error 
signal e1, e2 and e3 became zero. Therefore, the ratio of the 
master and the slave states xi and yi was 1 after a very short 
time as shown in figure 2. 
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Fig 2. Synchronization error between master and slave state 

variables of 3D shepherical chaotic atractor. 

 

 

4. SECURE COMMUNICATION BASED ON 

SYNCHRONIZED 3D CHAOTIC ATTRACTOR 
 

The secure communication system was successfully 

implemented in python by adopting the encryption model in 

Fig 3 which utilizes the synchronization configuration in 

master-slave topology as shown in Fig 4. Within the master 

system, the chaotic transmission signal Xm is employed to 

encrypt the original image using the X-OR operator. This 

encrypted image, denoted as IMt, is then transmitted to the 

receiver in the slave system. Ultimately, since the slave 

system approximates the master system, the recovered image 

IMr is obtained by performing the inverse of the encryption 

procedure. 

 
Fig 3. Master-slave topology-based secure communication system 

implemented on MPSoc. 

 

 
 

 

Fig 4. Master-slave topology-based secure communication 
system implemented on MPSoc 

 

 

In the implementation of the secure transmission system, 

grayscale and RGB images of dimensions 256 x 256 pixels 

were utilized. The image transmission commenced following 

the successful synchronization of the master and slave 

systems. In this study, each of the three state variables x1, x2, 

and x3 was employed as a transmission variable for RGB 

images. The obtained results were analyzed statistically. Due 

to space limitations, only the results related to the transmission 

variable yielding the best output, based on the correlation 

coefficients outlined in Table I, are presented. These results 

are depicted in Fig. 5 for the RGB image, showcasing the 

original, encrypted, and received images for variable x1 for 

grayscale and x3 for RGB.    

The system was implemented by utilizing FPGA technology, 

specifically leveraging the support provided by the PYNQ-Z1 

module. This module enables programming in the Hardware 

Description Language and in high-level languages like Python 

[11]. PYNQ is an open-source project that aims to simplify the 

design of embedded systems with Zynq, a Multi- Processor 

System on Chip (MPSoC) device manufactured by Xilinx 

[12,13]. This device succeeded its precursor, the Zynq-7000 

[12,13], and integrates two ARM-Cortex core processors and 

various interfaces vital for embedded systems, including I2C, 

SPI, CAN, UART, GPIO, and more. 

Next, the performance of the chaotic communication system 
was examined by carrying out security and statistical analyses 
on the results of the image transmission. As expected, a 
reliable encryption system should be robust against different 
kinds of attacks.   

In the implemented chaos-based secure communication 
system, the system parameters a1, a2, a3, b, c, c1, c2, c3, d, and 
e of the master and slave systems in (16) and (18), 
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respectively, can be taken as the primary secret key. Let’s 
assume the precision of each of the ten parameters is 10-12, then 
the secret key space will be equal to 10100, which is quite large 
enough to resist exhaustive hacker’s attack [14]. 

The concept of information entropy is used to measure the 
average information content associated with a random 
outcome. It describes the degree of uncertainty in a system. In 
image processing, information entropy is applied to measure 
the distribution of gray data values in the image [15]. 
Information entropy H is expressed mathematically as: 

 𝐻(𝐺) = −∑ 𝑃(𝑔𝑖)log2𝑃(𝑔𝑖)
𝑛
𝑖=1  (19) 

where, for image information, G is the image matrix, gi are the 
gray values of the image, P(gi) = Pr (G = gi) is the probability 
of the ith value of G. 

For example, if image G is a true random source producing 2N 
symbols, where N = 8 for 256x256 image, the theoretical value 
of information entropy of a true random image is 8. Therefore, 
it is expected that the information entropy of a well-encrypted 
image should be close to 8. According to Table I, the entropy 
values are very close to 8. This shows that the chaos-based 
encryption system is very effective. 

The coefficient is computed as follows: 

 𝑟 =  
∑ ∑ (𝐴𝑚𝑛− 𝐴)(𝐵𝑚𝑛− 𝐵)𝑛𝑚

√(∑ ∑ (𝐴𝑚𝑛− 𝐴)
2

𝑛𝑚 )(∑ ∑ (𝐵𝑚𝑛− 𝐵)
2

𝑛𝑚 )

 (20) 

where A and B are the mean of all values in arrays A and B. 

Also, the computation of the pixel correlation coefficients in 
horizontal, vertical, and diagonal directions, between the 
original and encrypted images, is defined and computed by the 
following formula: 

 ρ(𝑔, ℎ) =
cov(𝑔,ℎ)

σ𝑔σℎ
 (21) 

where 

 cov(𝑔, ℎ) =
1

n
∑ (𝑔𝑖 − μ𝑔)(ℎ𝑖 − μℎ)n

i=1  (22) 

Variables g and h are the gray values of two adjacent pixels in 
the image, σg and σh are the standard deviations of g and h 
respectively, and μg and μh are the means of g and h 
respectively. 

In Table I for grayscale and RGB, respectively, it is seen that 
correlation between the original and encrypted images is very 
close to 0 in all the transmission variables. Specifically, 
according to the correlation between the original and encrypted 
images, the best result in the grayscale image transmission was 
given by transmission variable x1, where r = 7.3793e-05 while 
for RGB it was variable x3, where r = 0.00113. 

 

 

 

 

Fig 5. Transmission of RGB image using x3 as transmission variable (a) 

original (b) encrypted (c) received. 

 

Table 1. Statistical Analysis of Grayscale and RGB Image Transmission 

Results by Entropy and Correlation 

Transmission 

variable 

Entropy of the 

encrypted image 

Correlation 

Original and 

encrypted 

Original and 

received 

Grayscale Image 

x1 7.9916 7.3793e-05 1 

x2 7.9918 0.00216 1 

x3 7.9908 0.00727 1 

RGB Image 

x1 7.9961 –0.00145 1 

x2 7.9981 0.00380 1 

x3 7.9965 0.00113 1 

The correlation between the adjacent pixels in the original 
grayscale and RGB images was very high, but after the 
encryption, the correlation was greatly reduced, as seen in the 
pixel correlation coefficients presented in Table II for 
grayscale and RGB, respectively. For example, the correlation 
coefficients of two horizontally adjacent pixels in the original 
grayscale image for x1 transmission variable was 0.94084 
while for the encrypted grayscale, it was –0.00101. In 
transmission variable x3 for RGB, the correlation coefficients 
of two horizontally adjacent pixels in the original image was 
0.93858 but for the encrypted image, it was 0.00040. The 
results were similar in all cases. Hence, the encryption 
performed in this investigation effectively removes relativity 
between the original and encrypted images.  

Table 2. Statistical Analysis of Grayscale and RGB Image Transmission 
Results by Pixel Correlation Coefficient in Horizontal, Vertical and 

Diagonal Direction. 

Variable 

Original Encrypted 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Grayscale Image 

x1 0.94084 0.97213 0.91711 -0.00101 -0.00182 -0.00500 

x2 0.94084 0.97213 0.91711 -0.00853 -0.00162 0.00458 

x3 0.94084 0.97213 0.91711 -0.00053 -0.00093 -0.00419 

   
(a)                            (b)                                     (c) 

   

 
(a)                            (b)                                     (c) 
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RGB Image 

x1 0.93858 0.94349 0.92708 0.00040 -0.00183 0.00225 

x2 0.93858 0.94349 0.92708 0.00121 0.01624 0.00148 

x3 0.93858 0.94349 0.92708 -0.00182 0.00111 -0.00075 

 

 

5. CONCLUSION  

 

In this work, a multimedia encryption system utilizing a 

synchronized 3-dimensional chaotic oscillators in master and 

slave topology was presented, where the synchronization was 

achieved by applying the Hamiltonian system with the 

observer-based approach. The process demonstrated rapid 

convergence, achieving zero synchronization errors, and 

thereby confirming successful synchronization between the 

master and slave systems. 

 

Furthermore, the synchronized system was applied to develop 

a secure communication system for transmitting RGB and 

grayscale images, whereby the state variables x1, x2, and x3 

were used as the transmission variables. Statistical and 

security assessments of the streaming results showcased the 

robustness of the system against extensive attacks. Notably, 

the correlation between the original and encrypted images 

approached zero, confirming the system's efficacy in secure 

image transmission.  

 

Moreover, this work was implemented by leveraging the 

Multipurpose System-on-Chip (MPSoC) platform through 

Interactive Python in Jupyter Notebook to unlock the 

untapped potentials within modern programming languages 

for hardware design. This approach allowed for high-level 

abstractions, parameterized generators, and freedom from 

specific computational models, culminating in the generation 

of superior RTL logic programming code in Verilog. The 

integration of fast Python-based simulation, efficient 

synthesis, and seamless interaction with other high-level 

languages emphasized the versatility and power of this 

platform for advanced hardware development and design. 

 Finally, based on the synchronization and image transmission 

done in this work, the 3-D chaotic spherical system is capable 

of being used to implement secure communication system. 

 

6. RECOMMENDATIONS 

 

Based on the successful implementation and results of the 

synchronized 3D spherical chaotic oscillator in a master-slave 

topology as presented in this article which was utilized for 

securing information transmitted through communciation 

system. The potential future direction recommended herein as 

as follows: 

1. Enhanced Security Protocol: The scientific body 

can explore advance security protocols and 

encryption techniques by utilizing the MPSoC 

platform. This could involve integrating additional 

encryption methods with the one presented in this 

paper to enhance data confidentiality. 

2. Integration with IoT Devices: The scientific body 

can explore the integration of the secure 

communication system with IoT devices for secure 

data transmission in IoT environments. 

 

7. REFERENCES 

 
[1] O.E. Rössler, "Different types of chaos in two simple differential 

equations," Zeitschrift fur Naturforschung A, vol. 31, no. 12, pp. 1976-
1231, Nov. 1976. 

[2] O.E. Rössler, "Continuous chaos - Four prototype equations," Annals 
of the New York Academy of Sciences, vol. 316, no. 1, pp. 376-392, 
Dec. 2006. 

[3] G. Chen, "The Chen system revisited," Dynamics of continuous, 
discrete and impulsive systems, Series B: Applications & algorithms, 
vol. 20, pp. 691-696, Nov. 2013. 

[4] Z. Wang, Y. Sun, and S. Cang, "A 3-D spherical chaotic attractor," 
Acta Physica Polonica B, vol. 42, no. 2, pp. 235-247, Feb. 2011. 

[5] T. Zhou and G. Chen, "A simple smooth chaotic system with a 3-layer 
attractor," International Journal of Bifurcation and Chaos, vol. 14, no. 
5, pp. 1795-1799, May 2004. 

[6] G. Li and X. Chen, "Constructing piecewise linear chaotic system 
based on the heteroclinic Shilnikov theorem," Communications in 
Nonlinear Science and Numerical Simulation, vol. 14, no. 1, pp. 194-
203, Jan. 2009. 

[7] T.S. Zhou and G. Chen, "Classification of chaos in 3-D autonomous 
quadratic systems-I. Basic framework and methods," International 
Journal of Bifurcation and Chaos, vol. 16, no. 9, pp. 2459-2479, Sept. 
2006. 

[8] Ding, Y., & Zheng, L. (2023). Existence of homoclinic orbit of 
Shilnikov type and the application in Rössler system. Mathematics and 
Computers in Simulation, 206, 770–779. 
https://doi.org/10.1016/j.matcom.2022.12.013  

[9] H. Sira-Ramirez and C. Cruz-Hernandez, "Synchronization of chaotic 
systems: A generalized Hamiltonian systems approach," International 
Journal of Bifurcation and Chaos, vol. 11, no. 5, pp. 1381-1395, May 
2001. 

[10] L.J. Pei and S.H. Liu, "Application of generalized Hamiltonian systems 
to chaotic synchronization," Nonlinear Dynamics and Systems Theory, 
vol. 9, no. 4, pp. 415-432, Sept. 2009. 

[11] Herrera-Charles, R., Álvarez-Sánchez, T., &; Álvarez-Cedillo, J. A. 
(2020). Synthesis of video processing with open-source hardware 
descriptor languages. In A. G. Tescher & T. Ebrahimi (Eds.), 
Applications of Digital Image Processing XLIII (p. 65). SPIE. 
https://doi.org/10.1117/12.2568949  

[12] Xilinx, Inc., “Zynq UltraScale+ Device: Technical Reference Manual”, 
UG1085, v1.9, January 2019. Available: 

[13] Xilinx, Inc., “Zynq UltraScale+ MPSoC Overview: Advance Product 
Specification”, DS891, v1.7, November 2018. Available: 
https://www.xilinx.com/support/documentation/data_sheets/ds891-
zynq-ultrascale-plus-overview.pdf 

[14] Sun, F., Lü, Z., & Liu, S. (2010). A new cryptosystem based on spatial 
chaotic system. Optics Communications, 283(10), 2066–2073. 
https://doi.org/10.1016/j.optcom.2010.01.028   

[15] G. Zhang and Q. Liu, "A novel image encryption method based on total 
shuffling scheme," Optics Communications, vol. 284, no. 12, pp. 2775-
2780, June 2015. 

https://doi.org/10.1016/j.matcom.2022.12.013
https://doi.org/10.1117/12.2568949
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://doi.org/10.1016/j.optcom.2010.01.028

