
Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.8, Núm. 15. Año 2020. 
 

166 
 

Chaos Control and Anti-control in Fractional 
Order Rössler System by Parameter Switching 
Method 
 
Vincent Ademola - Adeyemia, Esteban - Tlelo Cuautleb, 
Francisco Javier - Perez Pinalc, Andrés - Calvillo Télleza, 
Yuma - Sandoval Ibarrad, José Cruz - Núñez Péreza. 
 
a Instituto Politécnico Nacional, IPN-CITEDI, Av. Instituto Politécnico 
Nacional No. 1310, Colonia Nueva Tijuana, Tijuana, B. C., México. C.P. 
22435, {vademola, calvillo, nunez}@citedi.mx. 
b Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Luis 
Enrique Erro No. 1, Tonantzintla, San Andres Cholula, Puebla, México C.P. 
72840, etlelo@inaoep.mx. 
c Tecnológico Nacional de México, Instituto Tecnológico de Celaya, Antonio 
García Cubas Pte No. 600 esq. Av. Tecnológico, Celaya, Guanajuato, México, 
C.P. 38010, francisco.perez@itcelaya.edu.mx. 
d Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, 
Boulevard. Industrial s/n, Ciudad Industrial, Tijuana, B.C., México, C.P. 
22430, jumasaniba@gmail.com. 
 

 
Resumen 

Este artículo describe la metodología para llevar a cabo la 
supresión y el control de caos en un sistema de orden 
fraccional. El caso de estudio es el sistema de Rössler de orden 
fraccional. La dinámica del sistema se examina primero con 
el diagrama de bifurcación y el espectro de Lyapunov, lo más 
importante para identificar las ventanas estables y las regiones 
caóticas. El control y anti-control del caos en el orden 
fraccional del sistema Rössler se logra aplicando el esquema 
de cambio de parámetros utilizando el parámetro c del sistema 
como parámetros de cambio p. En el control del caos, la 
técnica de cambio de parámetros utiliza atractores caóticos 
para sintetizar un ciclo estable, mientras que los ciclos 
estables se utilizan para sintetizar un atractor inestable en el 
caso de control. En ambos casos, la solución "conmutada" del 
esquema de conmutación de parámetros se compara con el 
atractor subyacente de la solución "promediada" obtenida por 
el p* promedio de los valores conmutados. Los resultados 
muestran que la solución "conmutada" representa la 
aproximación de la solución "promediada". Los resultados se 
verifican usando retratos de fase, exponentes de Lyapunov y 
respuestas en el dominio del tiempo. Todas las simulaciones 
en este trabajo se llevaron a cabo en MATLAB. 
 
Palabras clave — Anti-control del caos, Control del caos, 
Sistema Rössler de orden fraccional, Exponente de Lyapunov, 
Conmutación de parámetros. 
 
Abstract 

This paper describes the methodology to carry out the 
suppression and anti-control of chaos in a fractional order 
system. The case study is fractional order Rössler system. The 
dynamics of the system are first examined with bifurcation 
diagram and Lyapunov spectrum, most importantly to identify 
the stable windows and chaotic regions. Control and anti-
control of chaos in the fractional order Rössler system is 
achieved by applying parameter switching scheme using the 
system parameter c as the switching parameters p. In chaos 

control, the parameter switching technique uses chaotic 
attractors to synthesize a stable cycle, while stable cycles are 
used to synthesize an unstable attractor in the anti-control 
case. In both cases, the “switched” solution of the parameter 
switching scheme are compared with the underlying attractor 
of the “averaged” solution obtained by the average p* of the 
switched values. The results show that the “switched” 
solution represents the approximation of the “averaged” 
solution. The results are verified using phase portraits, 
Lyapunov exponents, and time domain responses. All 
simulations in this work were carried out in MATLAB. 
 
Keywords — Anti-control of chaos, Chaos control, 
Fractional order Rössler system, Lyapunov exponent, 
Parameter switching. 
 
1. INTRODUCTION 
 
In the last few decades, the study of non-linear dynamics has 
given rise to a whole new perspective known as chaos. Chaos 
theory, also known as the “Butterfly Effect,” has applications 
in several sectors such as telecommunication [1, 2], 
engineering [3, 4], and many more. Several studies have been 
conducted to examine the dynamic behavior in chaotic 
oscillators, including chaos control in the systems.  
Chaos control is a subject of interest in chaos theory. It means 
suppressing chaos by stabilizing chaotic system responses, or 
transition between chaos and order. The concept is applicable 
in designing transmission systems whereby transmitted 
information, e.g. RGB image, can be recovered by stabilizing 
the chaotic system. On the other hand, anti-control of chaos 
makes a non-chaotic dynamical system chaotic or retains 
existing chaos in chaotic systems. It has a useful potential in 
system control theory. 
The authors in [5] studied the stabilization of a chaotic 
fractional order generalized Lokta-Volterra (GLV) model. 
The article in [6] presented the work on chaos control of 
Burke-Shaw system using time delayed feedback control. In 
[7] parameter switching technique was used to control chaos 
in non-commensurate fractional order Chen oscillator. Chaos 
in a fractional order system with coexisting attractors was 
studied in [8] and controlled using a single state variable 
linear controller. Fractional order financial system was 
examined in [9] for chaos control and anti-control by 
parameter switching. 
In this work, the objective is the control and anti-control of 
chaos in commensurate fractional order Rössler system. The 
main activity of this paper involves the application of 
parameter switching methodology to achieve the stated 
objective. Unlike other stabilization methods such as OGY, 
which involves “forcing” unstable periodic orbits to become 
stable, parameter switching enables convenient generation of 
any desirable stable attractor. 
The paper is organized in sections as follows. Section 2 
contains the theoretical framework of the investigation. The 
results of the work are presented in Section 3, while the 
conclusion of the paper is in Section 4.  
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2. THEORETICAL FRAMEWORK 
 
This section comprises the description of the chaotic system 
used as case study in this paper, namely, fractional order 
Rössler system. Also, the parameter switching technique 
applied for control and anti-control of chaos in the afore-
mentioned fractional system is presented.  
 
2.1 Fractional Order Rössler System 
 
The Rössler system, described in [10], was created by Otto 
Rössler as a continuous-time dynamical system that exhibits a 
single lobe chaotic attractor. It comprises of the following 
system of three non-linear ordinary differential equations: 
 
𝑥ሶ ൌ  െ𝑦 െ 𝑧                                                                                        
𝑦ሶ ൌ 𝑥  𝑎𝑦                                                                                  ሾ1ሿ 
𝑧ሶ ൌ 𝑏  𝑧ሺ𝑥 െ 𝑐ሻ                                                                               
 
where x, y, and z are the system dependent variables and a, b 
and c are the system parameters. The system is chaotic when 
a = 0.1, b = 0.1, and c = 14. 
The autonomous fractional order variant of the Rössler system 
above, modeled by the initial value problem (IVP) with 
Caputo’s derivative, is of the form: 
 

𝐷∗
𝑥ሺ𝑡ሻ ൌ 𝑓൫𝑥ሺ𝑡ሻ൯, 𝑥ሺ0ሻ ൌ  𝑥, 𝑡 𝜖 ሾ0, 𝑇ሿ            ሾ2ሿ 

 
where 𝐷∗

 is the Caputo’s deferential operator of order 0 < q 
≤ 1 and q=[q1, q2, q3, …, qn]T,  𝑓: 𝑹  → 𝑹 is a Lipschitz 
continuous nonlinear function, 𝑥 𝜖 𝑹 is the initial condition 
and T > 0. If q1 = q2 = q3 =…= qn, the fractional system is 
called commensurate order, otherwise, non-commensurate 
order. 𝐷∗

 is defined by: 
 

𝐷∗
𝑥ሺ𝑡ሻ ൌ

1
Гሺ𝑚 െ 𝑞ሻ

 න
𝑥ሺሻሺ𝜏ሻ

ሺ𝑡 െ 𝜏ሻାଵି 𝑑𝜏
௧


,

𝑚 െ 1 ൏ 𝑞 ൏ 𝑚                                                                           ሾ3ሿ 

 
where m is the smallest integer larger than q, x(m)(t) is the m-
order derivative in the usual sense and Г is the Euler’s Gamma 
function. 
Therefore, the fractional order equivalent of the Rössler 
system stated above is given in the next equation: 
 
𝐷∗

𝑥 ൌ  െ𝑦 െ 𝑧                                                                                   
𝐷∗

𝑦 ൌ 𝑥  𝑎𝑦                                                                              ሾ4ሿ 
𝐷∗

𝑧 ൌ 𝑏  𝑧ሺ𝑥 െ 𝑐ሻ                                                                          
 
which is chaotic when a = 10, b = 40, c = 2.5, h = 4 and k = 1. 
When q = 1, the system becomes the original Rössler system. 
 
2.2 Parameter Switching Technique 
 
The parameter switching (PS) is an elegant method for 
approximating numerically any attractor of a dynamical 

system modeled by a general IVP of integer and fractional 
order. It involves selecting a finite set of parameter values in 
which the control parameter (p) within the chosen set is 
switched in some periodic (deterministic) manner for 
relatively short time subintervals, while the underlying IVP 
is numerically integrated [7]. At the end, the solution 
obtained from the “switched” system of the PS scheme will 
approximate the one obtained when the parameter is replaced 
with the average (p*) of the switched values. 
Given the following general IVP of fractional order,  
 
𝐷∗

𝑥ሺ𝑡ሻ ൌ 𝑓൫𝑥ሺ𝑡ሻ൯  𝑝𝐴𝑥ሺ𝑡ሻ,   𝑥ሺ0ሻ ൌ 𝑥,   𝑡 𝜖 ሾ0, 𝑇ሿ       ሾ5ሿ 
 
where 𝐷∗

 is the Caputo’s deferential operator of order 0 < q 
≤ 1, 𝑓: 𝑹  → 𝑹 is a Lipschitz continuous nonlinear 
function, 𝑝 𝜖 𝑅 is the control parameter, 𝑥 𝜖 𝑹 is the initial 
condition, T > 0 and 𝐴 𝜖 𝐿ሺ𝑅ሻ is a constant matrix, the PS 
algorithm is expressed in the scheme that follows: 
 
ሾ𝑚ଵ𝑝ଵ, 𝑚ଶ𝑝ଶ, … , 𝑚ே𝑝ேሿ                                                            ሾ6ሿ 
 
where pi are the control parameters, i.e. p in the general IVP 
above, mi represent the weights associated with each pi and N 
> 1. While the IVP is integrated, for m1 integration steps p = 
p1, for the next m2 steps, p = p2, and so on until the last mN 
steps when p = pN. Following the same procedure, the PS 
algorithm repeats for the next set of N values of p until the 
integration time interval is covered.  
Applying the PS scheme, the obtained “switched” solution of 
the IVP will converge to the “averaged” solution obtained for 
p = p*, which is calculated thus: 
 

𝑝∗ ൌ  
∑ 𝑚

ே
ୀଵ 𝑝

∑ 𝑚
ே
ୀଵ

                                                                         ሾ7ሿ 

 
where p* is the average parameter. 
 
Let A denotes the set of attractors depending on p, P is the 
set of all possible p values, PN = {p1, p2,…, pN} ⊂ P is the set 
of chosen p, AN = {Ap1, Ap2,…, ApN} ⊂ A is the set of 
attractors corresponding to PN, AS denotes the synthesized 
attractor obtained from the “switched” solution using PS 
scheme, and A* is the attractor of the “averaged” solution 
when p = p*. 
 
3. RESULTS 
 
First and foremost, the dynamics of the fractional order 
Rössler system are examined with bifurcation diagram and 
Lyapunov exponent (LE) spectrum against the varied value 
of the system parameter c. The bifurcation diagram and LE 
spectrum give insights into the qualitative behavior of the 
system as the parameter value is varied. 
In the application of parameter switching technique to the 
general IVP of fractional order stated above for control and 
anti-control of chaos in the fractional order Rössler system, 



Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.8, Núm. 15. Año 2020. 

168 
 

the number of control parameter p in the IVP is N = 4. 
Therefore, the corresponding PS scheme is:  
 
ሾ𝑚ଵ𝑝ଵ, 𝑚ଶ𝑝ଶ, 𝑚ଷ𝑝ଷ, 𝑚ସ𝑝ସሿ                                                      ሾ8ሿ 

 
while P4 = {p1, p2, p3, p4} and A4 = {Ap1, Ap2, Ap3, Ap4}.  
 
The underlying IVP is integrated with a time interval of T = 
[0,700] while the integration step size h = 0.001. The 
fractional order Rössler system in this paper is of 
commensurate order in which p1=p2=p3=0.9999. The 
convergence of PS algorithm is verified for approximating the 
solution from the average parameter p* by comparing the 
attractor AS (plotted in red) with attractor A* (plotted in blue). 
All simulations were carried out in MATLAB 2016b on the 
following computer configuration: Processor: Intel(R) 
Core(TM) i7-4790, 3.60GHz; RAM: 12 GB; Operating 
System: Windows 10. The bifurcation diagram of state x and 
LE spectrum against the varied value of system parameter c 
(i.e. control parameter p) while keeping parameters a and b 
constant are shown in Figure 1.  

 
Fig. 1. Dynamics of Fractional order Rössler system (a) Bifurcation 

diagram of state x (b) Lyapunov exponents spectrum 
(a) 

 
(b) 

 
 

3.1 Case 1: Chaos Control 
 
In the bifurcation diagram presented in Figure 1, the focus is 
on the stable window where control parameter p = 23.33. To 
obtain the stable periodic cycle based on PS scheme [m1p1, 
m2p2, m3p3, m4p4], let p1 = 14, p2 = 18.33, p3 = 30.83, p4 = 
32.66, m1 = 1, m2 = 3, m3 = 2, and m4 = 1. The average value 
p* is calculated as follows: 
 

𝑝∗ ൌ
ሺ1 ∗ 14ሻ  ሺ3 ∗ 18.33ሻ  ሺ2 ∗ 30.83ሻ  ሺ1 ∗ 32.66ሻ

1  3  2  1
ൌ 23.33 

 
The underlying attractors Ap1, Ap2, Ap3 and Ap4 are chaotic 
(see Figures 2 (a) - (d)), while the “switched” solution is a 
stable cycle (see Figure 2 (e)). The “switched” solution (red 
color) approximates the “averaged” solution (blue color) 
corresponding to the p* (see Figure 2(g)). Paradoxically, the 
PS scheme for N = 4 leads to the following chaos control-
like: 
 
𝑐ℎ𝑎𝑜𝑠ଵ  𝑐ℎ𝑎𝑜𝑠ଶ  𝑐ℎ𝑎𝑜𝑠ଷ  𝑐ℎ𝑎𝑜𝑠ସ ൌ  𝑜𝑟𝑑𝑒𝑟               ሾ9ሿ 
 
where chaos1, chaos2, chaos3 and chaos4  are the chaotic 
behaviors Ap1, Ap2, Ap3 and Ap4, while order is the stable 
cycle AS from the PS algorithm. 
 

Fig. 2.  Chaos control in fractional order Rössler system with 
p*=23.33, PS scheme [m1p1, m2p2, m3p3, m4p4] and P4 = {14, 

18.33, 30.83, 32.66} (a) – (d) Chaotic attractors Ap1, Ap2, Ap3 and 
Ap4 (e) “Switched” solution AS (f) “Averaged” solution A* (g) 
Over-plots of AS (red) and A* (blue) (h) – (j) Over-plot of time 

series of x, y and z of AS and A*
. 

(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
 
 

(i) 

 
(j) 

 
 
Table 1 shows the values of the LEs of the chaotic attractors 
Ap1, Ap2, Ap3 and Ap4 and the stable cycle A* corresponding 
to the average parameter p*, approximated by the “switched” 
solution of the PS scheme. It is noted in A* that all the three 
LEs are less than zero, which is an indication of a stabilized 
system.  
 

Table 1. Lyapunov exponents of unstable cycles A4 = {Ap1, Ap2, 
Ap3, Ap4} and stable cycle A* for fractional order Rössler system 

Lyapunov 
exponents

Ap1 Ap2 Ap3 Ap4 A* 

LE1 
0.0599 0.0795 0.0784 0.0713

-
0.0034

LE2 
0.0011 0.0010 0.0011 0.0025

-
0.0119

LE3 
-

1.8024
-

1.7983 
-

1.6341 
-

1.6940
-

2.6071
 
3.2 Case 2: Chaos Anti-control 
 
In this case of anti-control, the focus is on the chaotic regions 
of the bifurcation diagram in Figure 1. The system is chaotic 
at several values on control parameter p, but p=33.32 is 
selected for this investigation. To synthesize unstable 
attractor based on PS scheme [m1p1, m2p2, m3p3, m4p4], let p1 

= 23.28, p2 = 23.33, p3 = 23.40, and p4 = 49.98 represent four 
stable orbits of the fractional order Rössler system, while m1 

= 2, m2 = 2, m3 = 1, and m4 = 3 are the associated weights. The 
average value p* is calculated as follows: 
 

𝑝∗

ൌ
ሺ2 ∗ 23.28ሻ  ሺ2 ∗ 23.33ሻ  ሺ1 ∗ 23.40ሻ  ሺ3 ∗ 49.98ሻ

1  3  2  1
ൌ 33.32 
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The underlying attractors Ap1, Ap2, Ap3 and Ap4 are stable (see 
Figures 3 (a) - (d)), while the “switched” solution is an 
unstable attractor (see Figure 3(e)). However, it is well-
observed in the time series that the attractors do not match 
completely (see Figures 3 (h) - (j)) as good as those in chaos 
control case. This is because chaotic attractors can only be 
approximated theoretically after a sufficiently long period of 
time [11].  
Paradoxically, the PS scheme for N = 4 leads to the following 
chaos anti-control manner: 
 
𝑜𝑟𝑑𝑒𝑟ଵ  𝑜𝑟𝑑𝑒𝑟ଶ  𝑜𝑟𝑑𝑒𝑟ଷ  𝑜𝑟𝑑𝑒𝑟ସ ൌ  𝑐ℎ𝑎𝑜𝑠              ሺ10ሻ 
 
where order1, order2, order3 and order4  are the chaotic 
behaviors Ap1, Ap2, Ap3 and Ap4, while chaos is the unstable 
cycle AS from the PS algorithm. 
 

Fig. 3.  Chaos anti-control in fractional order Rössler system with 
p*=33.32, PS scheme [m1p1, m2p2, m3p3, m4p4] and P4 = {23.28, 

23.33, 23.40, 49.98} (a) – (d) Chaotic attractors Ap1, Ap2, Ap3 and 
Ap4 (e) “Switched” solution AS (f) “Averaged” solution A* (g) Over-
plot of AS (red) and A* (blue) (h) – (j) Over-plots of time series of x, 

y and z of AS and A*
. 

(a) 

 
(b) 

 
(c) 

 
 
 
 
 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 
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(i) 

 
(j) 

 
 

In Table 2 is found the values of the LEs of the stable 
attractors Ap1, Ap2, Ap3 and Ap4 and the synthesized unstable 
attractor A* corresponding to the average parameter p*. The 
positive maximum LE of A* shows that the synthesized 
attractor is chaotic.  
 

Table 2. Lyapunov exponents of stable cycles A4 = {Ap1, Ap2, Ap3, 
Ap4} and unstable cycle A* for fractional order Rössler system 

Lyapunov 
exponents 

Ap1 Ap2 Ap3 Ap4 A* 

LE1 -0.0048 -0.0034 -0.0004 -0.0002 0.0595 

LE2 -0.0116 -0.0119 -0.0133 -0.0048 0.0030 

LE3 -2.6121 -2.6071 -2.6079 -2.2763 -2.3051 

 
4. CONCLUSION 
 
In this work, parameter switching technique was presented as 
a suitable technique to suppress chaos as well as anti-control 
of chaos in fractional order Rössler system, based on 
switching a set of chosen parameter values in a deterministic 
manner. The results are verified using phase portraits, time 
series and Lyapunov exponents. This contribution shows a 
great potential for PS application as a component in designing 
secure chaotic communication system, whereby chaos is used 
for encryption while the transmitted information is recovered 
by stabilizing the system by parameter switching technique. 
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