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Abstract 

The design of optimal controllers for complex dynamic 

systems is a key application area of Artificial Intelligence. 

This work proposes the optimization of a Linear Quadratic 

Regulator (LQR) applied to the control of a 2 degree-of-

freedom (2-DOF) helicopter using the bio-inspired White 

Shark Optimizer (WSO) algorithm. Conventional LQR 

parameters tuning is typically performed using analytical 

methods, which may be inefficient given the complexity and 

nonlinearity inherent in these systems. As an alternative, 

WSO is implemented to adjust these parameters and is 

compared against an LQR designed using the traditional 

analytical method and another optimized with Particle Swarm 

Optimization (PSO). The evaluation is conducted through 

simulations and an inferential statistical analysis of both 

heuristics. The results show that WSO enables a more 

efficient LQR tuning in terms of performance indices, 

including the Integral Absolute Error (IAE), the Integral 

Squared Error (ISE), and their time-weighted variants (ITAE 

and ITSE), compared to other tuning approaches. 

 

Keywords — Optimization, Linear Quadratic Regulator, 

White Shark Optimizer, 2-DOF Helicopter. 

 

Resumen 

El diseño de controladores óptimos para sistemas dinámicos 

complejos es un área de aplicación de la Inteligencia 

Artificial. En este trabajo, se propone la optimización de un 

Regulador Cuadrático Lineal (LQR) aplicado al control de un 

helicóptero de dos grados de libertad (2-DOF) mediante el 

algoritmo bioinspirado White Shark Optimizer (WSO). La 

sintonización convencional de los parámetros del LQR se 

lleva a cabo mediante métodos analíticos, los cuales pueden 

resultar ineficientes ante la complejidad y no linealidad 

inherente de estos sistemas. Como alternativa, se implementa 

el WSO para ajustar de estos parámetros, y se compara con 

un LQR diseñado mediante el método analítico tradicional y 

otro optimizado con Particle Swarm Optimization (PSO). La 

evaluación se realiza a través de simulaciones y un análisis  

estadístico inferencial de ambas heurísticas. Los resultados 

muestran que el WSO permite una sintonización más 

eficiente del LQR en términos de los índices de desempeño, 

incluyendo el Error Absoluto Integral (IAE), el Error 

Cuadrático Integral (ISE) y sus versiones ponderadas en el 

tiempo (ITAE e ITSE), respecto de los otros enfoques de 

sintonización. 

 

Palabras clave — Optimización, Regulador Cuadrático 

Lineal, White Shark Optimizer, Helicóptero de 2-DOF. 

 

1. INTRODUCTION 

 

One area of Artificial Intelligence is the development of 

heuristic algorithms to solve complex optimization problems. 

Inspired by human, evolutionary, biological or physical 

processes, these algorithms allow to address problems where 

the objective function is to be maximized or minimized [1]. 

One of their applications is the tuning of controllers, where 

the dynamics and limitations of the system to be controlled 

make traditional methods inefficient. 

 

A widely used case study in control is the 2-degree-of-

freedom (2-DOF) helicopter, a platform that allows to 

represent simplified models of more complex aerospace 

systems [2]. Its structure and dynamics make it an ideal 

system to evaluate control and optimization strategies. 

Various approaches have been proposed to regulate its 

behavior, highlighting methodologies such as robust control 

[3][4], intelligent control [5][6] and optimal control [7][8]. 

 

In the field of optimal control, the Linear Quadratic Regulator 

(LQR) is one of the most used strategies due to its ability to 

stabilize dynamic systems [7]. However, its effectiveness 

depends on the proper selection of the weighting matrices Q 

and R. This adjustment, often performed empirically or by 

deterministic analytical methods, can lead to suboptimal or 

inefficient solutions, commonly associated with the 

complexity and non-linearity of the systems. 

 

In the literature, various alternatives based on heuristic 

algorithms have been documented to tune LQR controllers 

[9][10]. As an example of this type of algorithm, the use of 

the White Shark Optimizer (WSO) is proposed, which 

emulates the hunting patterns of white sharks, allowing the 

exploration of wide search spaces to identify optimal 

configurations of the Q and R matrices, with the objective of 

minimizing the position error with respect to the desired 

reference. 

 

This work transforms the helicopter position control problem 

into a computational optimization problem, using the WSO 

for the tuning of an LQR. The proposed approach is 

compared with the analytical tuning method and another 

heuristic alternative, Particle Swarm Optimization (PSO), to 

determine its effectiveness in controller tuning, as well as its 

impact on system performance in terms of stability, accuracy 

and control effort. 

 

mailto:jgarciaj@uaemex.mx
mailto:fgarciam@uaemex.mx
mailto:eegrandag@uaemex.mx
mailto:aafloresf@uaemex.mx
mailto:vazquez.ricardo@aem.mx


Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025 

 

51 

 

2. 2-DOF HELICOPTER 

 

A two-degree-of-freedom (2-DOF) helicopter, as shown in 

Fig. 1, is a scale model of a real helicopter. This platform 

consists of a horizontal arm equipped with two rotors, 

mounted on a vertical base called a pivot. This configuration 

allows the model to move on two main axes: pitch (θ) and yaw 

(ψ). The pitch axis corresponds to the raising and lowering of 

the nose, while the yaw axis allows rotation about the pivot 

[2].  

 
Fig. 1. 2-DOF helicopter free-body diagram.

 
Source: own elaboration based on [2]. 

 

The helicopter is controlled by modulating the power of the 

rotors, which allows their angular position to be adjusted. To 

model this dynamic behavior, [2] uses is made of the state 

space representation shown in Fig. 2 and defined by equations 

1 and 2. 
Fig. 2. Block diagram of the state space.

 
Source: own elaboration based on [2]. 

 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) [1] 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) [2] 

 

Where 𝑥(𝑡) =  [𝜃(𝑡), 𝜓(𝑡), 𝜃̇(𝑡), 𝜓̇(𝑡)] is the state vector, 

𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡)] is the input vector (voltages applied to 

the motors) and 𝑦(𝑡) = [𝜃(𝑡), 𝜓(𝑡)] is the output vector (pitch 

and yaw axes). While 𝐴, 𝐵, 𝐶 y 𝐷 are the state model matrices, 

described in equations 3, 4, 5 and 6. 

 

𝐴 = [

0 0
0 0

1               0
0               1

0 0
0 0

−9.2768 0
0 −0.34931

] [3] 

𝐵 = [

0           0
0           0

2.3667 0.0789
0.2406 0.7909

] [4] 

𝐶 = [
1 0
0 1

0 0
0 0

] [5] 

𝐷 = [
0 0
0 0

] [6] 

3. LINEAR QUADRATIC REGULATOR 

The Linear Quadratic Regulator (LQR) is an optimal control 

technique that seeks to minimize a cost function that trades 

off the regulation of the system states and the effort required 

in the control signals [9]. The design of the LQR is based on 

finding the control law in equation 7 that minimizes the J 

function in equation 8. 

𝑢(𝑡) =  −𝐾𝑥(𝑡) [7] 

𝐽 = ∫ (𝑥(𝑡)𝑇𝑄𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡)) 𝑑𝑡
∞

0

 [8] 

Where Q is a positive semidefinite symmetric matrix 

penalizing the system states 𝑥(𝑡), R is a positive definite 

symmetric matrix penalizing the control inputs 𝑢(𝑡), and K is 

the state feedback gain matrix shown in 9, calculated using 

the P matrix resulting from solving the Riccati algebraic 

equation defined in 10. 

𝐾 = 𝑅−1𝐵𝑇𝑃 [9] 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 [10] 

According to [2] and [9], the 2-DOF helicopter attitude 

control using LQR is illustrated in the diagram in Fig. 3, 

where the system state vector 𝑥(𝑡) is fed back and multiplied 

by the gain K to generate the control signal 𝑢(𝑡). This 

regulates the pitch and yaw angular positions, trying to make 

the system reach the desired references. 
 

Fig. 3. Block diagram of the LQR controller.

 
Source: own elaboration based on [2]. 

 

In the context of the 2-DOF helicopter, matrices Q and R, are 

specifically defined to capture the system dynamics and meet 

the control objectives. For the considered model, Q is 

structured as a 4x4 diagonal matrix while R is a scalar matrix, 

as shown in expressions 11 and 12 respectively [2]. 
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𝑄 = [

𝑞11 0
0 𝑞22

0     0
0     0

0    0
0    0

𝑞33 0
0 𝑞44

] [11] 

𝑅 = [𝑟11] [12] 

 

The performance of a system controlled by an LQR depends 

on the proper choice of the parameters Q and R, which is 

traditionally done using analytical methods [2][4]. An 

alternative to this is the use of bio-inspired algorithms, such 

as the White Shark Optimizer (WSO), which allows the search 

space of matrices to be automatically explored to identify 

optimal configurations that maximize system performance.  

4. WHITE SHARK OPTIMIZER ALGORITHM 

 

4.1 Population initialization 

 

The White Shark Optimizer is an optimization algorithm bio-

inspired by the hunting process of the white shark. It 

mathematically models the process by which these predators 

seek, track and capture their prey [11]. To do this, they use an 

undulating motion along with their acute sense of smell and 

hearing to locate food sources. They then move towards their 

target, staying close to the most promising prey and finally, 

adjusting their movements until they focus on the optimal prey 

[11][12]. 

 

The WSO is performed on a w population of n sharks, where 

each individual represents a candidate solution within the 

search space [11]. The position of each i-th shark is denoted 

by a vector 𝑤𝑖  in a d-th dimensional space, corresponding to 

the number of variables to be optimized [11][12]. This is 

expressed according to [12] in equation 13. 

  

𝑤 =

[
 
 
 
𝑤1

1 𝑤2
1

𝑤1
2 𝑤2

2 ⋯
𝑤𝑑

1

𝑤𝑑
2

⋮ ⋱ ⋮
𝑤1

3 𝑤2
3 ⋯ 𝑤𝑑

𝑛]
 
 
 

 [13] 

 

4.2 Exploration 

 

In this first stage, the w population of sharks randomly explore 

the search space, trying to locate potentially promising areas. 

The position of each 𝑤𝑖  shark is calculated using the upper 

bound ub and lower bound lb of the search space as shown in 

14, where rand is a random number in the range of 0-1 [12]. 

 

 𝑤𝑖 = 𝑟𝑎𝑛𝑑 ∙ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏 [14] 

 

4.3 Exploitation 

Once the most promising prey have been identified, sharks 

adjust their positions in the direction of the most attractive 

prey. The speed of this movement is described according to 

[12] by the following equation: 

 

𝑣𝑘+1
𝑖 =  𝜇 (𝑣𝑘

𝑖 + 𝑝1[𝑤𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑤𝑘
𝑖 ] ∙ 𝑐1 + 𝑝2 [𝑤𝑏𝑒𝑠𝑡

𝑣𝑘
𝑖

− 𝑤𝑘
𝑖 ] ∙ 𝑐2) [15] 

 

where, 𝑣𝑘+1
𝑖  represents the updated velocity of the i-th white 

shark at iteration 𝑘 + 1,  𝑣𝑘
𝑖  is the current velocity of the 

predator at iteration 𝑘, 𝑤𝑔𝑏𝑒𝑠𝑡𝑘
 denotes the overall best 

position obtained so far, 𝑤𝑏𝑒𝑠𝑡

𝑣𝑘
𝑖

 represents the best individual 

position of i-th shark and  𝑤𝑘
𝑖  is the current location of i shark.  

𝑐1 y 𝑐2 are random coefficients in the range of [0,1]. 

Parameters 𝑝1, 𝑝2 and 𝜇 are calculated by [13] in equations 

16, 17, 18. 

 

𝑝1 = 𝑝𝑢𝑏 + (𝑝𝑢𝑏 − 𝑝𝑙𝑏) ∙ 𝑒
−(

4𝑘
𝑘𝑚𝑎𝑥 

)
2

 [16] 

𝑝2 = 𝑝𝑙𝑏 + (𝑝𝑢𝑏 − 𝑝𝑙𝑏) ∙ 𝑒
−(

4𝑘
𝑘𝑚𝑎𝑥 

)
2

 [17] 

𝜇 =
2

|2 − 𝜏 − √𝜏2 − 4𝜏|
;     𝜏 = 4.125 [18] 

 

Accordingly, the position of each shark is updated based on 

expression 19, such that mv is the motion force of the white 

shark denoted as in equation 20 and grows with each 

iteration; a and b represent binary vectors, and f is the 

frequency of the sharks’ undulating motion which is 

expressed in 21 [11][12]. 

 

𝑤𝑘+1
𝑖 = {

𝑤𝑘
𝑖¬ ⊕ 𝑤0 + 𝑢𝑏 ⋅ 𝑎 + 𝑙𝑏 ⋅ 𝑏 ;     𝑟𝑎𝑛𝑑 < 𝑚𝑣

𝑤𝑘
𝑖 +

𝑣𝑘
𝑖

𝑓
 ;                                          𝑟𝑎𝑛𝑑 ≥ 𝑚𝑣

 [19] 

𝑚𝑣 =
1

𝑎0 + 𝑒

𝑘𝑚𝑎𝑥 

2−𝑘

𝑎1

;   𝑎𝑜 = 6.25 , 𝑎1 = 100 
[20] 

𝑓 = 𝑓𝑚𝑖𝑛 +
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥 + 𝑓𝑚𝑖𝑛

 ;   𝑓𝑚𝑎𝑥 = 0.75, 𝑓𝑚𝑖𝑛 = 0.07  [21] 

 

4.4 Moving towards the best shark 

 

Finally, sharks update their position towards the best 

positioned shark to stay close to prey as in equation 22. So 

𝐷⃗⃗ 𝑤 is the distance between the prey and the shark and is 

represented as in 23, while 𝑠𝑠 describes the strength of the 

great white shark's senses of sight and smell by expression 24 

defined in [12]. 

𝑤𝑘+1
𝑖 =  𝑤𝑔𝑏𝑒𝑠𝑡𝑘

+ 𝑟1𝐷⃗⃗ 𝑤 ∙ 𝑠𝑔𝑛(𝑟2 − 0.5);    𝑟3 < 𝑠𝑠 [22] 

𝐷⃗⃗ 𝑤 = |𝑟𝑎𝑛𝑑 ∙ (𝑤𝑔𝑏𝑒𝑠𝑡𝑘
− 𝑤𝑘

𝑖 )| [23] 

𝑠𝑠 = |1 − 𝑒
−

0.0005𝑘
𝑘𝑚𝑎𝑥 | [24] 
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5. METHODOLOGY 

 

The methodological process followed to evaluate the 

effectiveness of the WSO algorithm in tuning a LQR for the 

2-DOF helicopter is presented in the flow chart in Fig. 4. It 

begins with the definition of the objective function to be 

optimized. From this, the WSO and PSO algorithms are 

implemented for the automatic tuning of the Q and R matrices 

and, in parallel, an LQR is designed using an analytical 

method. 

 

To evaluate both algorithms, an inferential statistical analysis 

is performed, followed by the validation of the three 

controllers through simulations. Finally, a comparative study 

is carried out to determine the effectiveness of the WSO in 

relation to the analytical method and the PSO, allowing its 

applicability to be evaluated. 

 
Fig. 4. Methodological scheme.

 
Source: own elaboration. 

 

It is important to note that the objective function to be 

minimized in this work corresponds to the sum of four 

performance metrics used in controller analysis: Integral 

Absolute Error (IAE), Integral Squared Error (ISE), Integral 

Absolute Error in Time (ITAE) and Integral Squared Error in 

Time (ITSE). These metrics allow the evaluation of the 

helicopter's behavior in terms of precision, stability and 

response time. The mathematical expression of this is defined 

in 25, solving it as a single-objective problem. 

 

𝐹𝑜𝑏𝑗(𝑥 ) = IAE+ISE+ITAE+ITSE [25] 

The performance indices are described in equations 26, 27, 

28 and 29. Here, e(t) represents the system error, defined as 

the difference between the desired position reference and the 

actual position of the system [9]. 

 

 𝐼𝐴𝐸  = ∫  |𝑒(𝑡)|𝑑𝑡
𝑇

0
             [26] 

  𝐼𝑆𝐸   = ∫  𝑒2(𝑡)𝑑𝑡
𝑇

0
           [27] 

𝐼𝑇𝐴𝐸 = ∫  𝑡 ∙ |𝑒(𝑡)|𝑑𝑡
𝑇

0
  [28] 

𝐼𝑇𝑆𝐸 = ∫  𝑡 ∙ 𝑒2(𝑡)𝑑𝑡
𝑇

0
    [29] 

 

Table 1 presents the configuration parameters used in the 

design of the WSO and PSO algorithms for LQR controller 

tuning. Both algorithms optimize the same set of variables, 

corresponding to the elements of the matrices Q and R, within 

a defined search space. A fixed number of iterations and 

agents are used to ensure a fair comparison between both 

heuristics. 

 
Table 1. Design parameters of the algorithms. 

Parameter WSO PSO 

Search space [0, 100] [0, 100] 

Variables [𝑞11,  𝑞22, 𝑞33,  𝑞44, 𝑟11] [𝑞11,  𝑞22, 𝑞33,  𝑞44, 𝑟11] 

Iterations 60 60 

Number of agents 100 100 

Source: own elaboration. 

6. RESULTS 

 

The first evaluation of the optimization algorithms' 

performance is based on their ability to minimize the defined 

objective function. Fig. 5 shows an example of the 

minimization process, comparing the convergence of the 

PSO (Fig. 5a) and WSO (Fig. 5b) in a representative run, 

showing the optimization trajectories for the smallest, largest, 

and average values of the objective function in each case. 

 

The analysis of the convergence curves presented shows 

significant differences in the behavior of the algorithms. The 

PSO converges more slowly, reaching the optimal value 

between iterations 50 and 60, with greater variability in the 

result. In contrast, the WSO shows faster convergence, 

reducing the objective function value in fewer than 30 

iterations and with less variability between runs, making it a 

better alternative in terms of speed and stability. 

 

The second part of the evaluation consists of the inferential 

statistical analysis, in which the results obtained by both 

heuristics are examined after 40 independent executions. 

Initially, the Kolmogorov-Smirnov test is used, which 

indicates that the two algorithms do not follow a normal 

distribution. Therefore, a Friedman test is applied, which 

indicates that there are statistically significant differences 

between the two approaches. 
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Fig. 5. Convergence comparison. 

 
Source: own elaboration. 

 

Due to the non-normality of the data, the median is used as a 

representative measure of the value of the objective function 

obtained by each algorithm. Additionally, the 1st and 3rd 

quartiles are calculated to obtain the interquartile range (IQR) 

as a dispersion metric of the results. Table 2 summarizes the 

values obtained in the statistical tests for both algorithms. 
 

Table 2. Statistical analysis. 

Parameter PSO WSO 

Kolmogórov-Smirnov test 1.0843x10-36 1.4002x10-36 

Friedman test 2.1014 x10-6 

Median 46.7870 46.0050 

Quartile 1 46.3650 45.9250 

Quartile 3 47.5325 46.2360 

IQR 1.1675 0.3110 

Source: own elaboration. 

 

The values show that the WSO achieves a lower median of the 

objective function, indicating a better performance in the 

optimization. Also, its interquartile range is smaller, reflecting 

a lower variability and, therefore, greater stability in the 

results obtained, which makes it a more consistent alternative 

for controller optimization, compared to the PSO. 

 

Table 3 presents the Q and R matrices resulting from the 

WSO and PSO produced by the median of the best agents in 

the 40 executions performed above. These parameters are 

subjected to validation by simulating the LQR controller in 

the adjustment of the helicopter's position. The responses of 

the pitch (θ) and yaw (ψ) angles to a step-type reference 

signal are shown in Fig. 6, their performance indicators are 

summarized in Table 4 and the best ones are highlighted. 

 
Table 3. Tuned arrays. 

 Q R 

PSO [

53.35   0
0      98.95

0            0
0            0

0            0
0            0

13.67    0
0   16.99

] [77.20] 

WSO [

45.90    0
0   85.34

0            0
0            0

0            0
0            0

23.19    0
0   28.04

] [66.30] 

Source: own elaboration. 

 
Fig. 6. Performance comparison of the proposed controllers in both 

the pitch and yaw axes of the helicopter. 

 
Source: own elaboration. 
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Table 4. Comparison of performance indicators. 

 
Settling 

time 

Steady 

state 

error 

IAE ISE ITAE ITSE 

L
Q

R
 θ 18s -12% 7.39 2.32 141.94 18.02 

ψ 20s 13% 9.44 2.92 173.52 26.11 

L
Q

R
+

P
S

O
 

θ 17s 0.86% 3.95 2.03 15.70 3.94 

ψ 19s 0.54% 3.61 1.99 12.20 3.36 

L
Q

R
+

W
S

O
 

θ 17s 0.79% 3.93 2.01 15.50 3.90 

ψ 19s 0.32% 3.59 1.96 12.07 3.04 

Source: own elaboration. 

 

7. CONCLUSIONS AND RECOMMENDATIONS 

 

The results of this work demonstrate the feasibility of using 

Artificial Intelligence in the tuning of the LQR controller 

applied to the 2-DOF helicopter. Both WSO and PSO 

significantly improved the position adjustment compared to 

the traditional analytical design. The statistical analysis 

showed that WSO achieved a greater reduction in the system 

error rates and presented a lower variability in its results 

compared to PSO, highlighting its stability and precision in 

controller optimization. 

 

On the other hand, in the evaluation of the controller 

performance, both heuristic algorithms managed to reduce the 

steady-state error and improve the transient response 

compared to LQR without optimization. Although the 

differences between WSO and PSO are minimal, WSO 

presented a lower steady-state error, as well as a better 

frightening of the performance indicators, suggesting a greater 

effectiveness of the controller in adjusting the helicopter's 

position. 

 

As future work, a comparison of the approaches implemented 

in this work with other bio-inspired optimization heuristics is 

proposed, in order to evaluate their performance in LQR 

tuning. Furthermore, the use of other control schemes will be 

explored, with the aim of improving the helicopter response 

in terms of settling time, steady-state error, and performance 

metrics. 
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