
Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

111

Sudoku Solver Acceleration with CUDA

Ivannia Gomez Moreno2, Ulises Orozco-Rosas1,*, Kenia Picos1

1CETYS Universidad, Av. CETYS Universidad No. 4. El Lago, C.P. 22210, Tijuana B.C., México

2University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
[ivgomezmoreno]@ucsd.edu, [ulises.orozco, kenia.picos]@cetys.mx

Abstract

The classic Sudoku is a puzzle with simple rules that can become complicated to solve automatically due to the exponential increase

in possible solutions as the board size increases. This paper presents an algorithmic solution to solve any size Sudoku incorporating

an implementation in CUDA C/C++ that, consequently, leverages parallel programming on a GPU. This involves using threads

and processes with shared and distributed memory for various solution strategies. These solution strategies encompass

backtracking, where multiple alternatives are tried until reaching a solution, and rule-based algorithms that rely on heuristics to

solve Sudokus, among others. Regardless of the implementation approach, it is pertinent to conduct a comparison between the

solution achieved with a parallel algorithm utilizing a GPU and a sequential algorithm processed on the CPU. This is done to

quantify the performance of the solution. The proposed algorithm managed to accelerate the traditional backtracking approach by

up to 7x on a typical 9x9 Sudoku. While getting 7x and 3x reduction on 16x16 and 25x25 boards respectively.

Resumen

El Sudoku clásico es un rompecabezas con reglas simples que pueden volverse complicadas de resolver automáticamente debido al

aumento exponencial de posibles soluciones a medida que aumenta el tamaño del tablero. Este artículo presenta una solución

algorítmica para resolver Sudokus de cualquier tamaño, incorporando una implementación en CUDA C/C++, que aprovecha la

programación paralela en GPU. Esto implica el uso de hilos y procesos con memoria compartida y distribuida para diversas

estrategias de solución. Estas estrategias de solución incluyen ‘backtracking’, donde se prueban múltiples alternativas hasta

encontrar una solución, además de algoritmos basados en reglas que se apoyan en heurísticas para resolver Sudokus.

Independientemente del enfoque de implementación, es pertinente realizar una comparación entre la solución del algoritmo paralelo

utilizando GPU y un algoritmo secuencial procesado en CPU. Esto se hace con el objetivo de cuantificar el rendimiento para

encontrar la solución. El algoritmo propuesto logró acelerar el enfoque tradicional de ‘backtracking’ hasta 7 veces en los Sudoku

típicos de 9x9. Además, se obtuvo una reducción de 7 veces en tableros de 16x16 y de 3 veces en tableros de 25x25.

Keywords— Sudoku problem, GPU acceleration, backtracking algorithm, heuristics, parallel programming

1. INTRODUCTION

Classical Sudoku constitutes a mathematical puzzle wherein

the objective is to fill a 9x9 grid with numbers from 1 to 9.

The grid is subdivided into 3x3 sections, and based on the

predetermined numbers, the remaining numbers must be

placed with the sole restriction that no repetition of numbers

is allowed in each row, column, or subdivision. One of the

most employed programmed algorithms for solving Sudoku

puzzles is backtracking. In this algorithm, the program

systematically explores every potential solution until success;

if unsuccessful, it backtracks to the previous step and explores

an alternative. Despite its straightforward rules, the puzzle

poses highly complex challenges as the initial pre-established

numbers decrease. This complexity arises because the

backtracking model involves testing an exponentially

growing number of cases as the predetermined numbers

diminish [1].

To accelerate this procedure, this paper introduces an

algorithm designed to resolve Sudoku puzzles with parallel

programming on a GPU, employing a backtracking approach.

A primary challenge encountered in implementing

backtracking within CUDA lies in the limitations imposed on

the number of recursive calls the GPU can generate [2].

Consequently, implementing this solution on larger

boards, where recursive calls may extend to significant

depths, is not a straightforward task. It is crucial to

acknowledge the myriad variations of Sudoku; however, the

scope of this project is confined to solving classic Sudoku

problems exclusively. The algorithm presented as a solution

could serve as a catalyst for generating other solutions related

to it, such as optimization problems, search algorithms,

resource planning, and, in general, problems involving

variables and constraints [3]. The main contributions of this

paper are as follows:

● Develop an algorithm in CUDA C/C++ to parallelize the

search for solutions to Sudokus of any size using

backtracking and adhering to the basic rules of Sudoku.

● Conduct a time comparison for the solution search of an

incomplete Sudoku board between a sequential algorithm

on the CPU and a parallelized algorithm on the GPU. Our

algorithm accelerated the traditional backtracking

approach by up to 7x on a typical 9x9 Sudoku. While

getting 7x and 3x reduction on 16x16 and 25x25 boards

respectively.

The article is organized as follows: Section 2 begins with

an introduction to key ideas in parallel computing. Section 3

then describes the implementation of the traditional

sequential backtracking approach, followed by a presentation
* Corresponding author.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

112

of the proposed GPU acceleration. Section 4 will present the

experimental results, while Section 5 will conclude up the

paper and summarize the main findings of this study.

2. BACKGROUND

Section 2.1 introduces key concepts for parallel computing in

CUDA. Threads, processes, memory models, communication

mechanisms, parallel algorithms, and programming are all

covered in this section. Section 2.2 delves into Sudoku-

solving methodologies, stressing backtracking and rule-based

algorithms needed to execute the proposed solution, as well

as the Boltzmann Machine.

2.1 Basic Concepts

We first introduce several basic concepts for the problem.

● CUDA C/C++: programming platform that facilitates the

acceleration of computations by leveraging GPUs. It

enables parallel programming to execute tasks

simultaneously across multiple GPU cores.

● Parallelization: the process of breaking down a task into

smaller subtasks that can be executed concurrently on

different CPU or GPU cores. Parallelization can be

utilized to enhance efficiency and reduce the execution

time of algorithms.

● Time comparison of solution search: aims to evaluate

the efficiency of both sequential and parallel algorithms.

Execution time can be measured using profiling tools that

analyze the runtime of different parts of the code. Time

comparisons assist in determining which algorithm is

faster and more effective in solving Sudoku problems.

● Parallel architectures: hardware systems designed to

support parallel computing, such as clusters, grids,

supercomputers, and multiprocessors.

● Threads and Processes: Threads and processes are basic

units of work that can be executed simultaneously in a

parallel system. Threads are sub-processes that share

hardware resources, while processes are separate instances

of a program that run independently [4].

● Shared and Distributed Memory: In shared memory

systems, multiple processors share a single physical

memory [5], whereas in distributed memory systems, each

processor has its own physical memory.

● Communication: Essential in parallel computing to

enable processors to exchange data and coordinate their

work. Communication mechanisms include shared

memory, distributed memory, and interconnection

networks.

● Parallel Algorithms: Specifically designed algorithms to

run on parallel systems. These algorithms divide tasks into

independent components that can be executed

simultaneously on different processors, significantly

enhancing performance.

● Parallel Programming: Process of writing software to

run on parallel systems. This involves dividing the work

into independent tasks and coordinating communication

and synchronization between processors.

2.2 Possible Solution Strategies

Multiple strategies have been developed to solve Sudoku

puzzles. Next, we list the most common:

1. Backtracking: It is an exhaustive search algorithm used

to find all possible solutions to a problem by

systematically exploring all options. If a point is reached

where further progress is not possible, the algorithm

backtracks to a previous option and tries a different value

[6]. This method ensures that a solution will be found if

one exists. In the case of Sudoku, the backtracking

algorithm seeks a solution following the game rules, trying

different numbers in each cell until a combination satisfies

all constraints. This is not a new idea; proposals for

solving Sudokus using backtracking have been made since

2014 [7]. Backtracking is an algorithm with exponentially

increasing execution time, a valid consideration for this

case study as Sudoku is an NP-complete problem, and a

polynomial solution is unknown [8].

2. Rule-Based Algorithm: It relies on heuristics to solve

Sudokus, trying various rules that allow filling cells or

eliminating candidate numbers [8]. The rules followed

include:

a. Naked Single: A cell with a single candidate

number.

b. Hidden Single: If a region (row, column, or box) has

a cell as the only option for storing a specific

number, that number must be placed there.

c. Naked Pair: If a region contains two cells, each with

the same two candidates, the rest of the region can

exclude these candidate numbers.

d. Hidden Pair: If a region contains two cells that can

hold two specific candidates, these cells form a

hidden pair, and any other candidate is excluded

from that pair.

e. Guessing: An empty cell is filled with one of its

candidates. The Sudoku-solving process continues

until it reaches a solution or an invalid state. In the

latter case, the guessed number is replaced with

another, and the process is repeated.

3. Boltzmann Machine: This algorithm models Sudoku

using a neural network capable of solving constraints.

Each puzzle is viewed as a "constraint" that describes

which nodes cannot be connected to each other. These

constraints are encoded as weights in a neural network,

which solves them in a way that its active nodes indicate

the chosen numbers [8].

This paper centers its attention on the backtracking

solution, given its more straightforward implementation in

parallel.

3. IMPLEMENTATION

The algorithm's execution time on the CPU is primarily

influenced by the Sudoku's difficulty and the number of given

clues. As the number of clues decreases, the solution space

becomes larger, necessitating more time to explore each

potential solution space.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

113

Fig. 1. Algorithm to Solve Sudoku on CPU

Fig. 2. Algorithm to Solve Sudoku on GPU

3.1 CPU

As previously mentioned, the backtracking strategy will be

employed, leveraging the concept of recursion within the

CPU algorithm. This approach will be applied to various 9x9

Sudokus, each solved ten times to obtain an average CPU

solving time. Within the code, three main functions, in

addition to the main function, are utilized as shown in Fig. 1:

● FindUnassignedLocation: This function, through a nested

‘for’ loop, examines each cell to identify the first number

that has not yet been assigned. This serves as the starting

point for developing a solution path.

● isSafe: It checks that the assigned number is not already

present in any cells within the same row, column, and 3x3

subgrid. This is achieved through specific ‘for’ loops for

each. Returns ‘TRUE’ only when the number proposed is

not present in these three scenarios.

● SolveSudoku: This is the main algorithm responsible for

backtracking. It starts with two empty pointers to the row

and column locations (row and col, respectively) to be

worked on. The FindUnassignedLocation function checks

if any number is unassigned, changing the pointers of row

and col to the first available location. If no unassigned

location is found (all the cells are full), the Sudoku is

solved, and SolveSudoku returns true, propagating the

solution to all previous calls to the algorithm. The Sudoku

is now solved in the same grid matrix, and it no longer

explores other options. Otherwise, it enters a ‘for’ loop,

checking all options (from 1 to 9) in that cell. If the isSafe

function returns true, a tentative assignment of that

number is made in that cell, and recursion proceeds with

a call to SolveSudoku, repeating the process. When it

reaches a point where the solutions taken so far are not

viable, indicating that SolveSudoku returned false at some

point, all tentative assignments are undone until another

possible path is found.

3.2 GPU

Unlike the CPU, these Sudokus are only attempted to be

solved twice, and the time is measured during the second

iteration. This is done to exclude the time taken for the GPU

connection. Two different functions were considered for

parallelization as shown in Fig. 2:

● FindUnassignedLocation: As mentioned earlier, this

function is called for each sub-level of recursion being

worked on at the moment and involves a nested loop. To

parallelize this function, blocks of 32 threads and the

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

114

necessary number of blocks per grid are considered.

Simultaneously, all cells of the Sudoku are examined, and

each thread saves its state in an array. This array is updated

through a pointer to search for the next available empty

space. This kernel accepts two parameter arrays: the initial

incomplete board and a pointer to the array where the

response will be stored. This kernel reduces the need for a

double ‘for’ loop that looks through each column and row.

● CreateTablesKernel: This is a new kernel function that

simultaneously generates various possible boards that

adhere to Sudoku rules. This kernel starts with blocks of a

single thread and NxNxN in the grid, where each block

represents a possibility to fill the first 3 empty spaces on

the board. For each thread, its blockIdx in each dimension

is used to verify if it is a safe combination on the board,

and its indices are saved in an array for use by the CPU.

In this implementation, the `isSafe` function and its

auxiliary functions were assigned values for both the host

and the device, as mentioned in the research [9]. This way,

the same function can be called from both the CPU and

the GPU, each with its respective copy.

Once the kernel is executed, the CPU takes those

validated values, copies them onto the board, and begins its

recursion. If it does not find a solution, it only needs to choose

the next solution; there is no need to revalidate because that

was already done on the GPU. This eliminates the need for

three ‘for’ loops for each cell to be checked (one for the

column, another for the row, and another for the block) as it

is done simultaneously at the outset.

4. RESULTS

Now, we show the results of the Sudoku Solver with CPU and

the following acceleration with GPU. The metric to be used

for comparing the two versions of the code will be the

execution time in seconds. The first version will be a

sequential code with backtracking processed on a CPU,

exploring one possibility at a time. The second version will

incorporate CUDA C/C++ to enable processing on the GPU.

In the parallel algorithm, a check is performed to examine the

first three empty squares. Once it finds a permutation that

does not break the Sudoku rules, it is handed over to the

sequential algorithm to fill in the remaining empty squares.

While this strategy heavily depends on the sequential

implementation, it is also essential to consider the limitations

when generating CUDA code, because the GPU has a limit

on the number of recursive calls that a thread can take with its

limited memory.

The entire implementation will be carried out in the C++

language, and for parallelization, it will leverage CUDA

libraries and be processed on an NVIDIA GPU, specifically

an NVIDIA Tesla T4, and on an Intel(R) Xeon(R) CPU @

2.20GHz.

The dataset used in the model implementation is from an

online collection of Sudokus [10], with dimensions of 9x9.

Specifically, those with a limited number of clues were

chosen due to the significant increase in possible cases for the

program, allowing for a clearer demonstration of the

advantages of using the GPU. The data will be passed to the

program as a matrix (a vector of vectors), where 0 represents

a space that can be filled with a positive number between 1

and 9. Additionally, three 16x16 Sudokus of varying

difficulty and three 25x25 Sudokus, featuring a much larger

solution space, were used. It is noteworthy that all Sudokus in

the dataset have the property of having a unique solution, thus

avoiding ambiguity in obtaining the results.

4.1 CPU

The initial experiments were conducted using the CPU, and

the following results were observed for the last fifty 9×9

Sudokus, specifically focusing on the most challenging ones

to solve within this size. In Fig. 3(a), the microsecond time

taken by the CPU to solve Sudoku is analyzed. It is observed

that there is a significant increase in the time for certain

Sudokus, taking up to 3 seconds to find the correct solution.

Based on the objectives, it is anticipated that this time will be

reduced with the optimization with CUDA using GPUs.

Additionally, the backtracking code was tested with 16×16

Sudokus, and the results can be observed in Fig. 3(b). Similar

to the previous graph, with fewer clues, there is a larger

solution space, requiring more solutions to be examined

before reaching the correct one. However, the longest

execution time is observed in the case of the 25×25 Sudoku,

as depicted in Fig. 3(c), where it can be observed that the time

for solutions extended to seconds, indicating a significant

opportunity for parallelization.

4.2 GPU

The comparative graph of resolution times for 9x9 Sudokus

in Fig. 3(a) reveals that, overall, the implementation using the

GPU outperforms the CPU, achieving a significant

performance improvement. However, it's important to note

that in some cases, the GPU's resolution speed was lower.

This is because the problem size remains relatively small, and

the data transfer process to the GPU generates some overhead

[11]. Despite this, the GPU implementation achieved

considerably faster times at three highlighted points on the

graph. In these cases, the GPU solved Sudokus 4.8, 3.6, and

7 times faster than the CPU, demonstrating its ability to

accelerate the resolution process in challenging situations.

When comparing results with 16x16 Sudokus in Fig.

3(b), the advantage of using the GPU in terms of resolution

speed is clear. At the easy level, the GPU managed to solve

puzzles approximately 1.5 times faster than the CPU, with

times of 10s compared to 15s, respectively. At the medium

level, performance decreased minimally, solving the same

problem in approximately 1.4 times less time than the CPU,

with times of 43s compared to 62s. However, the most

significant impact was observed at the difficult level, where

the GPU was exceptionally faster, solving puzzles 7.25 times

faster than the CPU, with times of 28s compared to 203s.

Finally, the results of the comparison between the CPU

and GPU in the resolution of 25x25 Sudokus in Fig. 3(c)

consistently show the outstanding superiority of the GPU. At

the easy level, the GPU achieved an average time of 26s,

which is approximately 3.4 times faster than the CPU, which

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

115

took an average of 88s. At the medium level, the GPU once

again demonstrated its efficiency, taking an average of 124s,

approximately 3.1 times faster than the CPU. At the difficult

level, the GPU implementation took 250s to solve the puzzle,

implying it was 3.0 times faster than the CPU, which required

an average of 762s.

 a) Execution time 9x9

 b) Execution time 16x16 c) Execution time 25x25

Fig. 3. Execution times between CPU and GPU at different levels

of difficulty

5. CONCLUSION

In this paper, we develop a parallel algorithm capable of

accelerating the computation of a Sudoku solution. However,

certain important details need to be highlighted. Firstly, the

parallel model manages to achieve a shorter execution time

than the sequential algorithm in cases where a more profound

search in terms of possible solutions is required. This is

attributed to the structure of the parallel algorithm,

specifically the section that is parallelized, which is the search

for possible solutions. Therefore, if the solution is found

within the initial iterations, the difference between the CPU

and GPU implementations is not substantial. This solution

underscores the complexity of identifying the best

implementation in parallel algorithms, as numerous variables,

such as thread and block configurations, memory access

frequency, and the type of memory used, can influence

execution time.

Hence, it is affirmed that the implemented parallel

algorithm efficiently solves a Sudoku when the search for

possible solutions becomes extensive. Nevertheless, this

parallel algorithm can be further optimized by leveraging

shared memory, thread utilization, and expanding parallelized

sections, among other techniques.

Despite the apparent simplicity of our solution,

optimizing GPU usage through backtracking proves to be a

powerful technique with applications across various

industrial domains. Its ability to accelerate intensive data

processing significantly reduces wait times in computational

optimization tasks. In bioinformatics, this strategy facilitates

the comparison and alignment of DNA and protein sequences,

while in logistics and transportation, it enhances the search

for optimal routes in complex systems. Additionally, resource

optimization enables efficient allocation in linear

programming problems, such as production planning.

Accelerating these processes through the efficient

management of threads on GPUs remains an innovative area

with great potential for automating tasks that traditionally

require manual and computationally expensive searches

6. BIBLIOGRAPHY

[1] Arteaga, A., Orozco-Rosas, U., Montiel, O., Castillo, O.

(2022). Evaluation and Comparison of Brute-Force Search and

Constrained Optimization Algorithms to Solve the N-Queens

Problem. In: Castillo, O., Melin, P. (eds) New Perspectives on

Hybrid Intelligent System Design based on Fuzzy Logic, Neural

Networks and Metaheuristics. Studies in

Computational Intelligence, vol 1050. Springer, Cham.

[2] Orozco-Rosas, U., Montiel, O., Sepúlveda, R. (2015).

Parallel Evolutionary Artificial Potential Field for Path Planning-

An Implementation on GPU. In: Melin, P., Castillo, O.,

Kacprzyk, J. (eds) Design of Intelligent Systems Based on Fuzzy

Logic, Neural Networks and Nature-Inspired Optimization.

Studies in Computational Intelligence, vol 601. Springer, Cham.

[3] Orozco-Rosas, U., Picos, K., Montiel, O., Castillo, O. (2021).

GPU Accelerated Membrane Evolutionary Artificial Potential

Field for Mobile Robot Path Planning. In: Castillo, O., Melin, P.

(eds) Fuzzy Logic Hybrid Extensions of Neural and

Optimization Algorithms: Theory and Applications. Studies in

Computational Intelligence, vol 940. Springer, Cham.

[4] S. Cook, CUDA programming: a developer’s guide to

parallel computing with GPUs. Newnes, 2012.

[5] M. G. John Cheng and T. McKercher, Professional CUDA C

Programming. John Wiley Sons, Incorporated, 2014.

[6] F. N. Abu-Khzam, K. Daudjee, A. E. Mouawad, and N.

Nishimura, “On scalable parallel recursive backtracking,”

Journal of Parallel and Distributed Computing, vol. 84, pp. 65–

75, 2015

[7] A. K. Maji and R. K. Pal, “Sudoku solver using minigrid

based back-tracking,” in 2014 IEEE International Advance

Computing Conference (IACC). IEEE, 2014, pp. 36–44

[8] P. Berggren and D. Nilsson, “A study of sudoku solving

algorithms,” Master’s thesis, KTH Computer Science and

Communication, Stockholm, Sweden, 2012.

[9] R. Farber, CUDA application design and development.

Elsevier, 2011.

[10] S. Qiu, X. Shu, Y. Xie, and Y. Wang. (2018) Parallelized

giant sudoku solver. [Source code].

https://github.com/shiyunqiu/CS205 Sudoku

[11] Orozco-Rosas, U., Montiel, O., Sepúlveda, R. (2017). An

Optimized GPU Implementation for a Path Planning Algorithm

Based on Parallel Pseudo-bacterial Potential Field. In: Melin, P.,

Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid

Intelligent Systems. Studies in Computational Intelligence, vol

667. Springer, Cham.

