Numero Especial de la Revista Aristas: Investigacion Basica y Aplicada. ISSN 2007-9478, Vol.12, Num. 20. Afio 2025

Sudoku Solver Acceleration with CUDA

Ivannia Gomez Moreno?, Ulises Orozco-Rosas” ", Kenia Picos’

!CETYS Universidad, Av. CETYS Universidad No. 4. El Lago, C.P. 22210, Tijuana B.C., México
2University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
[ivgomezmoreno]@ucsd.edu, [ulises.orozco, kenia.picos]@cetys.mx

Abstract

The classic Sudoku is a puzzle with simple rules that can become complicated to solve automatically due to the exponential increase
in possible solutions as the board size increases. This paper presents an algorithmic solution to solve any size Sudoku incorporating
an implementation in CUDA C/C++ that, consequently, leverages parallel programming on a GPU. This involves using threads
and processes with shared and distributed memory for various solution strategies. These solution strategies encompass
backtracking, where multiple alternatives are tried until reaching a solution, and rule-based algorithms that rely on heuristics to
solve Sudokus, among others. Regardless of the implementation approach, it is pertinent to conduct a comparison between the
solution achieved with a parallel algorithm utilizing a GPU and a sequential algorithm processed on the CPU. This is done to
quantify the performance of the solution. The proposed algorithm managed to accelerate the traditional backtracking approach by
up to 7x on a typical 9x9 Sudoku. While getting 7x and 3x reduction on 16x16 and 25x25 boards respectively.

Resumen

El Sudoku clasico es un rompecabezas con reglas simples que pueden volverse complicadas de resolver automaticamente debido al
aumento exponencial de posibles soluciones a medida que aumenta el tamario del tablero. Este articulo presenta una solucion
algoritmica para resolver Sudokus de cualquier tamario, incorporando una implementacion en CUDA C/C++, que aprovecha la
programacion paralela en GPU. Esto implica el uso de hilos y procesos con memoria compartida y distribuida para diversas
estrategias de solucion. Estas estrategias de solucion incluyen ‘backtracking’, donde se prueban multiples alternativas hasta
encontrar una solucion, ademads de algoritmos basados en reglas que se apoyan en heuristicas para resolver Sudokus.
Independientemente del enfoque de implementacion, es pertinente realizar una comparacion entre la solucion del algoritmo paralelo
utilizando GPU y un algoritmo secuencial procesado en CPU. Esto se hace con el objetivo de cuantificar el rendimiento para
encontrar la solucion. El algoritmo propuesto logro acelerar el enfoque tradicional de ‘backtracking’ hasta 7 veces en los Sudoku
tipicos de 9x9. Ademas, se obtuvo una reduccion de 7 veces en tableros de 16x16 y de 3 veces en tableros de 25x235.

Keywords— Sudoku problem, GPU acceleration, backtracking algorithm, heuristics, parallel programming

1. INTRODUCTION

Classical Sudoku constitutes a mathematical puzzle wherein
the objective is to fill a 9x9 grid with numbers from 1 to 9.
The grid is subdivided into 3x3 sections, and based on the
predetermined numbers, the remaining numbers must be
placed with the sole restriction that no repetition of numbers
is allowed in each row, column, or subdivision. One of the
most employed programmed algorithms for solving Sudoku
puzzles is backtracking. In this algorithm, the program
systematically explores every potential solution until success;
if unsuccessful, it backtracks to the previous step and explores
an alternative. Despite its straightforward rules, the puzzle
poses highly complex challenges as the initial pre-established
numbers decrease. This complexity arises because the
backtracking model involves testing an exponentially
growing number of cases as the predetermined numbers
diminish [1].

To accelerate this procedure, this paper introduces an
algorithm designed to resolve Sudoku puzzles with parallel
programming on a GPU, employing a backtracking approach.
A primary challenge encountered in implementing
backtracking within CUDA lies in the limitations imposed on
the number of recursive calls the GPU can generate [2].

* Corresponding author.

Consequently, implementing this solution on larger
boards, where recursive calls may extend to significant
depths, is not a straightforward task. It is crucial to
acknowledge the myriad variations of Sudoku; however, the
scope of this project is confined to solving classic Sudoku
problems exclusively. The algorithm presented as a solution
could serve as a catalyst for generating other solutions related
to it, such as optimization problems, search algorithms,
resource planning, and, in general, problems involving
variables and constraints [3]. The main contributions of this
paper are as follows:

e Develop an algorithm in CUDA C/C++ to parallelize the
search for solutions to Sudokus of any size using
backtracking and adhering to the basic rules of Sudoku.

e Conduct a time comparison for the solution search of an
incomplete Sudoku board between a sequential algorithm
on the CPU and a parallelized algorithm on the GPU. Our
algorithm accelerated the traditional backtracking
approach by up to 7x on a typical 9x9 Sudoku. While
getting 7x and 3x reduction on 16x16 and 25x25 boards
respectively.

The article is organized as follows: Section 2 begins with
an introduction to key ideas in parallel computing. Section 3
then describes the implementation of the traditional
sequential backtracking approach, followed by a presentation

111

Numero Especial de la Revista Aristas: Investigacion Basica y Aplicada. ISSN 2007-9478, Vol.12, Num. 20. Afio 2025

of the proposed GPU acceleration. Section 4 will present the
experimental results, while Section 5 will conclude up the
paper and summarize the main findings of this study.

2. BACKGROUND

Section 2.1 introduces key concepts for parallel computing in
CUDA. Threads, processes, memory models, communication
mechanisms, parallel algorithms, and programming are all
covered in this section. Section 2.2 delves into Sudoku-
solving methodologies, stressing backtracking and rule-based
algorithms needed to execute the proposed solution, as well
as the Boltzmann Machine.

2.1 Basic Concepts

We first introduce several basic concepts for the problem.

e CUDA C/C++: programming platform that facilitates the
acceleration of computations by leveraging GPUs. It
enables parallel programming to execute tasks
simultaneously across multiple GPU cores.

e Parallelization: the process of breaking down a task into
smaller subtasks that can be executed concurrently on
different CPU or GPU cores. Parallelization can be
utilized to enhance efficiency and reduce the execution
time of algorithms.

e Time comparison of solution search: aims to evaluate
the efficiency of both sequential and parallel algorithms.
Execution time can be measured using profiling tools that
analyze the runtime of different parts of the code. Time
comparisons assist in determining which algorithm is
faster and more effective in solving Sudoku problems.

e Parallel architectures: hardware systems designed to
support parallel computing, such as clusters, grids,
supercomputers, and multiprocessors.

e Threads and Processes: Threads and processes are basic
units of work that can be executed simultaneously in a
parallel system. Threads are sub-processes that share
hardware resources, while processes are separate instances
of a program that run independently [4].

e Shared and Distributed Memory: In shared memory
systems, multiple processors share a single physical
memory [5], whereas in distributed memory systems, each
processor has its own physical memory.

e Communication: Essential in parallel computing to
enable processors to exchange data and coordinate their
work. Communication mechanisms include shared
memory, distributed memory, and interconnection
networks.

e Parallel Algorithms: Specifically designed algorithms to
run on parallel systems. These algorithms divide tasks into
independent components that can be executed
simultaneously on different processors, significantly
enhancing performance.

e Parallel Programming: Process of writing software to
run on parallel systems. This involves dividing the work
into independent tasks and coordinating communication
and synchronization between processors.

2.2 Possible Solution Strategies

Multiple strategies have been developed to solve Sudoku

puzzles. Next, we list the most common:

1. Backtracking: It is an exhaustive search algorithm used
to find all possible solutions to a problem by
systematically exploring all options. If a point is reached
where further progress is not possible, the algorithm
backtracks to a previous option and tries a different value
[6]. This method ensures that a solution will be found if
one exists. In the case of Sudoku, the backtracking
algorithm seeks a solution following the game rules, trying
different numbers in each cell until a combination satisfies
all constraints. This is not a new idea; proposals for
solving Sudokus using backtracking have been made since
2014 [7]. Backtracking is an algorithm with exponentially
increasing execution time, a valid consideration for this
case study as Sudoku is an NP-complete problem, and a
polynomial solution is unknown [8].

2. Rule-Based Algorithm: It relies on heuristics to solve
Sudokus, trying various rules that allow filling cells or
eliminating candidate numbers [8]. The rules followed
include:

a. Naked Single: A cell with a single candidate
number.

b. Hidden Single: If a region (row, column, or box) has
a cell as the only option for storing a specific
number, that number must be placed there.

c. Naked Pair: If a region contains two cells, each with
the same two candidates, the rest of the region can
exclude these candidate numbers.

d. Hidden Pair: If a region contains two cells that can
hold two specific candidates, these cells form a
hidden pair, and any other candidate is excluded
from that pair.

e. Guessing: An empty cell is filled with one of its
candidates. The Sudoku-solving process continues
until it reaches a solution or an invalid state. In the
latter case, the guessed number is replaced with
another, and the process is repeated.

3. Boltzmann Machine: This algorithm models Sudoku
using a neural network capable of solving constraints.
Each puzzle is viewed as a "constraint” that describes
which nodes cannot be connected to each other. These
constraints are encoded as weights in a neural network,
which solves them in a way that its active nodes indicate
the chosen numbers [8].

This paper centers its attention on the backtracking
solution, given its more straightforward implementation in
parallel.

3. IMPLEMENTATION

The algorithm's execution time on the CPU is primarily
influenced by the Sudoku's difficulty and the number of given
clues. As the number of clues decreases, the solution space
becomes larger, necessitating more time to explore each
potential solution space.

112

Numero Especial de la Revista Aristas: Investigacion Basica y Aplicada. ISSN 2007-9478, Vol.12, Num. 20. Afio 2025

|
|
|
3 0 0 1 0 1 3 0 1 0 3 5 0 1 0
|
0 6 0 |16 0 1 v 0 6 16 0 0 6 0 |16 0
| Are there
14 (0|9 |7 |11 —|> any missing - (14| 0 7 (11 — > 14 0|9 |7 |1
values? Yes 1..25 Yes
4 13 2 12 0 : N 4 13 12 0 4 13 2 12 0
o
| v No Safe
0 0 0 0 |14 0 0 0 14 Value 0 0 0 0 14
| Sudoku
1 Solved
|
1 Backtrack and try next safe number
e e, e e e, e —————————— - ———
SolveSudoku
Fig. 1. Algorithm to Solve Sudoku on CPU
] 6 0 16] 0 6] 16 L
2 14 o 9 7 1 14 0 9 7 11 ! Solve :
= a 13 2 12 [Yes | 4 13 2 12 0 | Sudoku 1
0 o o 0 14 o 0 0 o 14 R 1
3 o o 1 0 T T, T T T -
- - - 2 ’ ° - ’ o 6 0 16 o o 6 0 16 o
o|6 |00 T, T, Tea | T T 0 6 0 16 0
14 o 9 7 11 14 0 9 7 1
@09 |7 |1 T, T, Tovs | Towea | o 14 0 9 7 1 —_— 2 m
o a 13 2 12 o 4 13 2 12 o
a |13|2 120 :.?sdsu:: Tyt | T Tovs | Towa | Toes ii‘? a 13 2 |12 | o [~
" o 0 0 o 14 o 0 0 o 14
0 6 o [| 0 0 6 o |15 | o ' _-;
© 14 0 9 7 1 14 0 9 7 1 1 Solve 1
s 1 Sudoku |
5 4 13 2 12 0 Yes | 4 13 2 12 0
S | 1
o 0 0 o 14 0 0 0 o 14
GPU Number of Threads (T) = NxN GPU Number of Threads (T, ; ,) = NxNxN

Fig. 2. Algorithm to Solve Sudoku on GPU
3.1CPU

As previously mentioned, the backtracking strategy will be
employed, leveraging the concept of recursion within the
CPU algorithm. This approach will be applied to various 9x9
Sudokus, each solved ten times to obtain an average CPU
solving time. Within the code, three main functions, in
addition to the main function, are utilized as shown in Fig. 1:
e FindUnassignedLocation: This function, through a nested
‘for’ loop, examines each cell to identify the first number
that has not yet been assigned. This serves as the starting
point for developing a solution path.

e isSafe: It checks that the assigned number is not already
present in any cells within the same row, column, and 3x3
subgrid. This is achieved through specific ‘for’ loops for
each. Returns “TRUE’ only when the number proposed is
not present in these three scenarios.

o SolveSudoku: This is the main algorithm responsible for
backtracking. It starts with two empty pointers to the row
and column locations (row and col, respectively) to be
worked on. The FindUnassignedLocation function checks
if any number is unassigned, changing the pointers of row
and col to the first available location. If no unassigned

location is found (all the cells are full), the Sudoku is
solved, and SolveSudoku returns true, propagating the
solution to all previous calls to the algorithm. The Sudoku
is now solved in the same grid matrix, and it no longer
explores other options. Otherwise, it enters a ‘for’ loop,
checking all options (from 1 to 9) in that cell. If the isSafe
function returns true, a tentative assignment of that
number is made in that cell, and recursion proceeds with
a call to SolveSudoku, repeating the process. When it
reaches a point where the solutions taken so far are not
viable, indicating that SolveSudoku returned false at some
point, all tentative assignments are undone until another
possible path is found.

3.2 GPU

Unlike the CPU, these Sudokus are only attempted to be
solved twice, and the time is measured during the second
iteration. This is done to exclude the time taken for the GPU
connection. Two different functions were considered for
parallelization as shown in Fig. 2:

e FindUnassignedLocation: As mentioned earlier, this
function is called for each sub-level of recursion being
worked on at the moment and involves a nested loop. To
parallelize this function, blocks of 32 threads and the

113

Numero Especial de la Revista Aristas: Investigacion Basica y Aplicada. ISSN 2007-9478, Vol.12, Num. 20. Afio 2025

necessary number of blocks per grid are considered.
Simultaneously, all cells of the Sudoku are examined, and
each thread saves its state in an array. This array is updated
through a pointer to search for the next available empty
space. This kernel accepts two parameter arrays: the initial
incomplete board and a pointer to the array where the
response will be stored. This kernel reduces the need for a
double ‘for’ loop that looks through each column and row.

e CreateTablesKernel: This is a new kernel function that
simultaneously generates various possible boards that
adhere to Sudoku rules. This kernel starts with blocks of a
single thread and NxNxN in the grid, where each block
represents a possibility to fill the first 3 empty spaces on
the board. For each thread, its blockIdx in each dimension
is used to verify if it is a safe combination on the board,
and its indices are saved in an array for use by the CPU.
In this implementation, the ‘isSafe’ function and its
auxiliary functions were assigned values for both the host
and the device, as mentioned in the research [9]. This way,
the same function can be called from both the CPU and
the GPU, each with its respective copy.

Once the kernel is executed, the CPU takes those
validated values, copies them onto the board, and begins its
recursion. If it does not find a solution, it only needs to choose
the next solution; there is no need to revalidate because that
was already done on the GPU. This eliminates the need for
three ‘for’ loops for each cell to be checked (one for the
column, another for the row, and another for the block) as it
is done simultaneously at the outset.

4. RESULTS

Now, we show the results of the Sudoku Solver with CPU and
the following acceleration with GPU. The metric to be used
for comparing the two versions of the code will be the
execution time in seconds. The first version will be a
sequential code with backtracking processed on a CPU,
exploring one possibility at a time. The second version will
incorporate CUDA C/C++ to enable processing on the GPU.
In the parallel algorithm, a check is performed to examine the
first three empty squares. Once it finds a permutation that
does not break the Sudoku rules, it is handed over to the
sequential algorithm to fill in the remaining empty squares.
While this strategy heavily depends on the sequential
implementation, it is also essential to consider the limitations
when generating CUDA code, because the GPU has a limit
on the number of recursive calls that a thread can take with its
limited memory.

The entire implementation will be carried out in the C++
language, and for parallelization, it will leverage CUDA
libraries and be processed on an NVIDIA GPU, specifically
an NVIDIA Tesla T4, and on an Intel(R) Xeon(R) CPU @
2.20GHz.

The dataset used in the model implementation is from an
online collection of Sudokus [10], with dimensions of 9x9.
Specifically, those with a limited number of clues were
chosen due to the significant increase in possible cases for the
program, allowing for a clearer demonstration of the
advantages of using the GPU. The data will be passed to the

program as a matrix (a vector of vectors), where 0 represents
a space that can be filled with a positive number between 1
and 9. Additionally, three 16x16 Sudokus of varying
difficulty and three 25x25 Sudokus, featuring a much larger
solution space, were used. It is noteworthy that all Sudokus in
the dataset have the property of having a unique solution, thus
avoiding ambiguity in obtaining the results.

4.1 CPU

The initial experiments were conducted using the CPU, and
the following results were observed for the last fifty 9x9
Sudokus, specifically focusing on the most challenging ones
to solve within this size. In Fig. 3(a), the microsecond time
taken by the CPU to solve Sudoku is analyzed. It is observed
that there is a significant increase in the time for certain
Sudokus, taking up to 3 seconds to find the correct solution.
Based on the objectives, it is anticipated that this time will be
reduced with the optimization with CUDA using GPUs.
Additionally, the backtracking code was tested with 16x16
Sudokus, and the results can be observed in Fig. 3(b). Similar
to the previous graph, with fewer clues, there is a larger
solution space, requiring more solutions to be examined
before reaching the correct one. However, the longest
execution time is observed in the case of the 25%25 Sudoku,
as depicted in Fig. 3(c), where it can be observed that the time
for solutions extended to seconds, indicating a significant
opportunity for parallelization.

4.2 GPU

The comparative graph of resolution times for 9x9 Sudokus
in Fig. 3(a) reveals that, overall, the implementation using the
GPU outperforms the CPU, achieving a significant
performance improvement. However, it's important to note
that in some cases, the GPU's resolution speed was lower.
This is because the problem size remains relatively small, and
the data transfer process to the GPU generates some overhead
[11]. Despite this, the GPU implementation achieved
considerably faster times at three highlighted points on the
graph. In these cases, the GPU solved Sudokus 4.8, 3.6, and
7 times faster than the CPU, demonstrating its ability to
accelerate the resolution process in challenging situations.
When comparing results with 16x16 Sudokus in Fig.
3(b), the advantage of using the GPU in terms of resolution
speed is clear. At the easy level, the GPU managed to solve
puzzles approximately 1.5 times faster than the CPU, with
times of 10s compared to 15s, respectively. At the medium
level, performance decreased minimally, solving the same
problem in approximately 1.4 times less time than the CPU,
with times of 43s compared to 62s. However, the most
significant impact was observed at the difficult level, where
the GPU was exceptionally faster, solving puzzles 7.25 times
faster than the CPU, with times of 28s compared to 203s.
Finally, the results of the comparison between the CPU
and GPU in the resolution of 25x25 Sudokus in Fig. 3(c)
consistently show the outstanding superiority of the GPU. At
the easy level, the GPU achieved an average time of 26s,
which is approximately 3.4 times faster than the CPU, which

114

Numero Especial de la Revista Aristas: Investigacion Basica y Aplicada. ISSN 2007-9478, Vol.12, Num. 20. Afio 2025

took an average of 88s. At the medium level, the GPU once
again demonstrated its efficiency, taking an average of 124s,
approximately 3.1 times faster than the CPU. At the difficult
level, the GPU implementation took 250s to solve the puzzle,
implying it was 3.0 times faster than the CPU, which required
an average of 762s.

500

— cPu
— GPU

CPU: 255us
GPU: 53us

Puzzle #

a) Execution time 9x9

cPU: 2035
GPU: 785

— oy €PU: 7625 200{ — U

— R GPU: 2505 —
200 GPU GRU

5 CPU: 3895
§ aon GPU: 1245

Time (seconds)

cPU: 625
5 GPU: 435

CPU: B85
200 { GPU: 265
501 cPui1ss
100 GPU: 105
as

easy medium tard
Puzzie #

b) Execution time 16x16

easy medium hard
Puzzie #

¢) Execution time 25x25

Fig. 3. Execution times between CPU and GPU at different levels
of difficulty

5. CONCLUSION

In this paper, we develop a parallel algorithm capable of
accelerating the computation of a Sudoku solution. However,
certain important details need to be highlighted. Firstly, the
parallel model manages to achieve a shorter execution time
than the sequential algorithm in cases where a more profound
search in terms of possible solutions is required. This is
attributed to the structure of the parallel algorithm,
specifically the section that is parallelized, which is the search
for possible solutions. Therefore, if the solution is found
within the initial iterations, the difference between the CPU
and GPU implementations is not substantial. This solution
underscores the complexity of identifying the best
implementation in parallel algorithms, as numerous variables,
such as thread and block configurations, memory access
frequency, and the type of memory used, can influence
execution time.

Hence, it is affirmed that the implemented parallel
algorithm efficiently solves a Sudoku when the search for
possible solutions becomes extensive. Nevertheless, this
parallel algorithm can be further optimized by leveraging
shared memory, thread utilization, and expanding parallelized
sections, among other techniques.

Despite the apparent simplicity of our solution,
optimizing GPU usage through backtracking proves to be a
powerful technique with applications across various
industrial domains. Its ability to accelerate intensive data

processing significantly reduces wait times in computational
optimization tasks. In bioinformatics, this strategy facilitates
the comparison and alignment of DNA and protein sequences,
while in logistics and transportation, it enhances the search
for optimal routes in complex systems. Additionally, resource
optimization enables efficient allocation in linear
programming problems, such as production planning.
Accelerating these processes through the efficient
management of threads on GPUs remains an innovative area
with great potential for automating tasks that traditionally
require manual and computationally expensive searches

6. BIBLIOGRAPHY

[1] Arteaga, A., Orozco-Rosas, U., Montiel, O., Castillo, O.
(2022). Evaluation and Comparison of Brute-Force Search and
Constrained Optimization Algorithms to Solve the N-Queens
Problem. In: Castillo, O., Melin, P. (eds) New Perspectives on
Hybrid Intelligent System Design based on Fuzzy Logic, Neural
Networks and Metaheuristics. Studies in

Computational Intelligence, vol 1050. Springer, Cham.

[2] Orozco-Rosas, U., Montiel, O., Sepulveda, R. (2015).
Parallel Evolutionary Artificial Potential Field for Path Planning-
An Implementation on GPU. In: Melin, P., Castillo, O.,
Kacprzyk, J. (eds) Design of Intelligent Systems Based on Fuzzy
Logic, Neural Networks and Nature-Inspired Optimization.
Studies in Computational Intelligence, vol 601. Springer, Cham.
[3] Orozco-Rosas, U., Picos, K., Montiel, O., Castillo, O. (2021).
GPU Accelerated Membrane Evolutionary Artificial Potential
Field for Mobile Robot Path Planning. In: Castillo, O., Melin, P.
(eds) Fuzzy Logic Hybrid Extensions of Neural and
Optimization Algorithms: Theory and Applications. Studies in
Computational Intelligence, vol 940. Springer, Cham.

[4] S. Cook, CUDA programming: a developer’s guide to
parallel computing with GPUs. Newnes, 2012.

[5S]M. G. John Cheng and T. McKercher, Professional CUDA C
Programming. John Wiley Sons, Incorporated, 2014.

[6] F. N. Abu-Khzam, K. Daudjee, A. E. Mouawad, and N.
Nishimura, “On scalable parallel recursive backtracking,”
Journal of Parallel and Distributed Computing, vol. 84, pp. 65—
75,2015

[7]1 A. K. Maji and R. K. Pal, “Sudoku solver using minigrid
based back-tracking,” in 2014 IEEE International Advance
Computing Conference (IACC). IEEE, 2014, pp. 3644

[8] P. Berggren and D. Nilsson, “A study of sudoku solving
algorithms,” Master’s thesis, KTH Computer Science and
Communication, Stockholm, Sweden, 2012.

[9] R. Farber, CUDA application design and development.
Elsevier, 2011.

[10] S. Qiu, X. Shu, Y. Xie, and Y. Wang. (2018) Parallelized
giant sudoku solver. [Source code].
https://github.com/shiyunqiu/CS205 Sudoku

[11] Orozco-Rosas, U., Montiel, O., Septlveda, R. (2017). An
Optimized GPU Implementation for a Path Planning Algorithm
Based on Parallel Pseudo-bacterial Potential Field. In: Melin, P.,
Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid
Intelligent Systems. Studies in Computational Intelligence, vol
667. Springer, Cham.

115

