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Abstract 

Path planning is fundamental in autonomous navigation, especially in industrial environments with priorities for time efficiency and 

optimal resource management. This work examines the Probabilistic Roadmap Method (PRM) and the A* algorithm, comparing 

their path generation time, trajectory distance, and tracking time to determine which performs better under these metrics. For the 

evaluation, both algorithms were implemented in MATLAB, and the CoppeliaSim simulator was used to model the movement of a 

differential robot in different environments inspired by industrial work cells. Both algorithms stand out for their versatility, as path 

generation is independent of the type of robot, allowing their application in differential, Ackermann, and omnidirectional robots 

with minimal adjustments to navigation. Choosing the right path-planning algorithm can significantly enhance the performance of 

robotic systems by reducing operational delays and optimizing efficiency in industrial environments. Understanding the differences 

between these algorithms is crucial for improving navigation in structured spaces, such as industrial work cells, where safety and 

efficiency are critical factors. By providing a detailed analysis of their performance, this research contributes to developing more 

efficient robotic systems, particularly in scenarios where precise and reliable navigation is essential.  

Key Words— A* Algorithm, Probabilistic Roadmap Method, Path Planning, Autonomous Navigation, Mobile Robots 

 

Resumen 

En la navegación autónoma, la planificación de rutas es un aspecto fundamental, especialmente en entornos industriales donde la 

eficiencia en el tiempo y el uso óptimo de los recursos son prioritarios. En este trabajo, se comparan el método Probabilistic 

Roadmap (PRM) y el algoritmo A* en términos de tiempo de generación de ruta, distancia de la trayectoria y tiempo de seguimiento. 

El objetivo principal es determinar cuál de los dos algoritmos ofrece un mejor desempeño bajo estas métricas. Para llevar a cabo 

la evaluación, se implementaron ambos algoritmos en MATLAB y se utilizó el simulador CoppeliaSim para modelar el movimiento 

de un robot diferencial en distintos entornos inspirados en celdas de trabajo industriales. Ambos algoritmos destacan por su 

versatilidad, ya que la generación de rutas es independiente del tipo de robot, lo que permite su aplicación en robots diferenciales, 

Ackermann y omnidireccionales con ajustes mínimos en la navegación. Seleccionar el algoritmo de planificación de rutas adecuado 

puede mejorar significativamente el desempeño de los sistemas robóticos, reduciendo retrasos operativos y optimizando la 

eficiencia en entornos industriales. Comprender las diferencias entre estos algoritmos es fundamental para mejorar la navegación 

en espacios estructurados, como celdas de trabajo industriales, donde la seguridad y la eficiencia son aspectos críticos. Al 

proporcionar un análisis detallado de su desempeño, esta investigación contribuye al desarrollo de sistemas robóticos más 

eficientes, especialmente en escenarios donde la navegación precisa y confiable es esencial. 

Palabras Clave— Algoritmo A*, Probabilistic Roadmap, Planificación de Trayectoria, Navegación Autónoma, Robots Móviles 

 

1. INTRODUCTION 

There is a constant pursuit of faster and more efficient path-

planning algorithms, especially in an industrial environment 

where time directly impacts production and the limited 

available resources. This leads to the implementation of 

navigation algorithms that ensure reaching the goal as quickly 

and safely as possible [1]. 

Among the classical autonomous navigation algorithms 

are the Probabilistic Roadmap Method (PRM) and the A* 

algorithm. These algorithms have proven effective, 

successfully generating feasible paths in known 

environments. However, in industrial applications, such as 

material transportation, it is important to ensure successful 

transport and complete it in the shortest possible time and 

with maximum safety [2].  

Therefore, it is essential to evaluate the performance of 

these algorithms in terms of path generation time, path length, 

and tracking time [3]. This is because the shortest path does 

not always guarantee the lowest tracking time. 

This study presents a comparison between the PRM and 

the A* algorithm to assess their performance in known 

environments. The path planning is implemented on a 

differential robot within different scenarios inspired by the 

layout of industrial work cells, using the CoppeliaSim 

simulator. 

 

2. THEORETICAL FRAMEWORK 

Path planning is the process by which a robot or autonomous 

system determines the optimal route to move from a starting 

* Corresponding author. 
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point to a specific destination [4]. This process involves using 

algorithms to evaluate possible trajectories, considering 

factors such as distance, the presence of obstacles, and 

environmental constraints [5]. Path planning is essential for 

autonomous navigation, enabling the robot to move 

efficiently and safely within its operational environment [6]. 

Focusing on path planning, this work addresses two of 

the most employed alternatives, the A* algorithm, and the 

Probabilistic Roadmap Method. The A* (A-star) algorithm 

is a search and path-planning algorithm. It is an extension of 

Dijkstra's algorithm that incorporates a heuristic to improve 

search efficiency. 

The algorithm evaluates each node based on two costs: 

the accumulated cost from the start to the current node, 𝑔(𝑛), 

and a heuristic estimate of the cost from the current node to 

the goal, ℎ(𝑛). The sum of these costs guides the search, 

allowing the selection of the node with the lowest value, 𝑓(𝑛), 

as can be seen in Eq. 1. 

𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛) (1) 

The process starts with the initial node and expands 

neighboring nodes, moving each evaluated node from the 

open set (nodes yet to be explored) to the closed set (nodes 

already explored). If a node provides a shorter path, its costs 

are updated, and it is added to the open set. This process 

repeats until the goal node is found or the open set is 

exhausted. Once the goal is reached, the optimal path is 

reconstructed by tracing back from the goal node to the start 

node [7]. 

The Probabilistic Roadmap Method (PRM) is a path-

planning technique used in robotics. It consists of two main 

phases: the construction phase and the query phase. 

In the construction phase, a series of nodes are randomly 

generated within the free configuration space (the space 

where the robot can move without colliding). Nearby nodes 

are connected by direct paths if these paths do not intersect 

obstacles, forming a graph of possible routes. In the query 

phase, the start and goal points are added to the graph and 

connected to the nearest existing nodes [8]. 

Now, once the path has been planned, we require the 

controller to track the resultant path. The Pure Pursuit 

controller is available in MATLAB. Pure Pursuit is a path-

tracking algorithm that calculates the angular velocity 

command to steer the robot, assuming a constant linear 

velocity, from its current position toward a look-ahead point 

in front of the robot. The algorithm then moves the look-

ahead point along the path based on the robot's current 

position until reaching the final point of the trajectory [9]. 

The controllerPurePursuit object is not a 

traditional controller but rather a tracking algorithm for path-

following purposes. Desired linear velocities and maximum 

angular velocities can be specified, and these properties are 

defined based on the vehicle's specifications. 

Metrics for evaluating the planning algorithms. Initially, 

multiple experiments were conducted with different 

parameter values for each algorithm, defining these 

parameters empirically. 

The performance of the PRM depends on the number of 

nodes provided to the algorithm. Therefore, experiments were 

conducted with three different values: 100, 300, and 500 

nodes. The goal was to determine the optimal number of 

nodes that provide the best balance between the route 

generation time, the robot's tracking time within the 

simulation, and the shortest path length. 

To determine the required number of repetitions for 

reliable data, preliminary test runs were performed. Using a 

20% margin of error and a 90% confidence level, it was 

determined that 67-68 samples were needed for each node 

count and each map. 

Similarly, for the A* algorithm, the number of repetitions 

was calculated to ensure reliable data. With a 20% margin of 

error based on the standard deviation and a 90% confidence 

level, a sample size of 67.5 was obtained, which was rounded 

to 68 samples per map. 

These tests were used to select the optimal number of 

nodes for the PRM and the heuristic for the A* algorithm. For 

PRM, 100, 300, and 500 nodes were tested, while for A*, a 

heuristic value of √2 was chosen. 

 

3. PROPOSAL 

It is essential to define the research objectives, which in this 

case focus on determining which algorithm offers a shorter 

time for both path planning and the robot's path-following 

process. Time and distance play a crucial role in this work, as 

they are the key parameters used to measure the efficiency of 

the algorithms [10]. 

The programming will be carried out in MATLAB, 

where the map and algorithms will be implemented to 

generate both the paths and the robot's velocities, allowing 

simulations to be performed later in the CoppeliaSim 

environment. A black-and-white image is used, where black 

regions represent obstacles. The image is converted to PGM 

format, where each pixel is assigned a value normalized to 

either 1 or 0. Values of 1 represent obstacles, while 0 

represents free space within the map. Once the map is 

represented as a matrix, the start and goal coordinates are 

defined within MATLAB. It is important to ensure that these 

locations are within free space; otherwise, the algorithm will 

indicate that generating a path is not possible. 

Once the start and goal points are defined, the mapping 

process begins using the selected algorithm. For the PRM, a 

specific number of nodes is required. This algorithm 

generates nodes in random positions outside the obstacles and 

establishes connections between nearby nodes, provided a 

direct line can be drawn without intersecting obstacles. Three 

different node counts will be tested: 100, 300, and 500, to find 

a balance between computation time and the quality of the 

generated path. 

On the other hand, the A* algorithm requires an initial 

heuristic value. A higher heuristic value can result in longer 

paths but reduces the computational cost, decreasing the 

processing time. In this case, a constant heuristic value of √2 

will be used since the grid created by the algorithm has unit 

distances of 1 per side. Once the heuristic is defined, a cost 
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map is generated, containing the cost values between nodes 

and the accessible points for the path (i.e., those not occupied 

by obstacles). 

Experimental Environment. To validate the efficiency 

of the algorithms, a realistic simulation environment is 

created in CoppeliaSim, due to its versatility in designing 

scenarios and its ability to consider factors such as gravity and 

collisions. The environment is constructed using prismatic 

objects that simulate the arrangement of tables in industrial 

work cells. The PRM and A* algorithm will be tested on five 

different maps—four of them based on typical work cell 

layouts and one designed to challenge the algorithms by 

incorporating an obstacle that forces the search for alternative 

routes. The map images are shown in Fig. 1. 

 

 

Fig.1. Maps used with their corresponding start and goal 

points 

 

Variables and configurations. The variables to be 

evaluated are the route generation time, the time taken by the 

robot to follow the route, and the length of the route. To 

measure the generation time, the MATLAB “cputime” 

function is used, which records the time in seconds spent by 

the processor executing the program instructions. The time is 

measured by placing the function before and after the 

corresponding code and calculating the difference, as shown 

in Eq. 2. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑎𝑙𝐻𝑜𝑢𝑟 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑜𝑢𝑟 (2) 

Subsequently, the Pure Pursuit controller from 

MATLAB is implemented for path-following. This controller 

uses a look-ahead point with a distance of 0.3 units and the 

points from the generated path to guide the robot. Since it is a 

differential drive robot, the wheel speeds are calculated using 

specific equations for its movement. The velocities of each 

wheel of the robot need to be obtained. For this, the equations 

shown in Eq. 3 and Eq. 4 are used. 

𝑉𝑙 =  
𝜐 −  𝜔 ∗

0.3309
2

0.195
 (3) 

𝑉𝑟 =  
𝜐 +  𝜔 ∗

0.3309
2

0.195
 (4) 

The connection between MATLAB and CoppeliaSim is 

made through the simulator's Remote API, ensuring that the 

necessary files (remApi.m, remoteApi.dll, and 

remoteApiProto.m) are present in the working directory. 

During the path-following process, the "plotTransforms" 

function in MATLAB is used to visualize the robot's position 

and orientation in real time, verifying how the robot follows 

the planned trajectory. Once the path is completed, the 

simulation process is finished and the connection between 

MATLAB and CoppeliaSim is terminated. 

To measure the time, it takes for the robot to follow the 

path, the "cputime" function is used again. In this case, it is 

placed at the beginning and end of the path, before 

terminating the connection between the programs. The same 

procedure used for calculating the path generation time is 

applied, and the difference is calculated as shown in Eq. 5. 

𝐹𝑜𝑙𝑙𝑜𝑤𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑎𝑙𝐻𝑜𝑢𝑟 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑜𝑢𝑟 (5) 

To obtain the total distance, the "dist" function is used, 

which measures the distance between two points. Therefore, 

to obtain the total distance, the function is applied to the list 

of coordinates output by the algorithms when generating the 

path. 

 

4.  RESULTS 

A total of 68 samples were taken for each algorithm 

configuration on each map, ensuring a 90% confidence level 

in the results obtained. 

 

4.1. Results of the PRM 

For the PRM, configurations with 100, 300, and 500 nodes 

were tested. As expected, when using 100 nodes, the path 

generation time was lower compared to the case with 500 

nodes, as shown in Table 1. 

However, it was observed that the results in terms of 

distance and path-following time were significantly better 

when using 500 nodes, as shown in Table 2 and Table 3. This 

is because a higher number of nodes provides better resultant 

paths with shorter lengths, at the cost of slightly increased 

computation time. 

For this reason, the comparison between the PRM and A* 

algorithm was carried out with the 500-node configuration, as 

the additional time required for path generation with 500 

nodes is compensated by the improvement in trajectory 

quality and efficiency in path-following, as shown in Table 4. 
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Generation time 

Map Nodes 
Average 

time Best time Worst time 

Map 1 100 1.6026 1.3438 2.1094 

Map 1 300 2.0802 1.3750 3.2500 

Map 1 500 5.7313 5.1875 8.4219 
     

Map 2 100 1.0833 0.9375 1.3281 

Map 2 300 2.8365 2.5156 3.1250 

Map 2 500 5.4557 5.0312 6.1406 
     

Map 3 100 1.0539 0.9688 1.2969 

Map 3 300 2.8979 2.7344 3.1406 

Map 3 500 5.4190 5.0625 5.9844 
     

Map 4 100 1.0333 0.9375 1.1719 

Map 4 300 2.9156 2.6094 3.4844 

Map 4 500 5.2938 4.9688 5.7500 
     

Map 5 100 1.1208 0.9688 1.6719 

Map 5 300 3.0020 2.6875 3.3906 

Map 5 500 4.7676 4.3594 5.8906 
Table 1. Results showing the time in seconds for the PRM to 

generate the path 

 

Path length 

Map Nodes 
Average 
length Best length 

Worst 
length 

Map 1 100 157.8630 125.8899 207.7826 

Map 1 300 157.8626 128.0059 201.8299 

Map 1 500 165.0253 129.1917 191.9098 
     

Map 2 100 355.3018 114.7656 692.1785 

Map 2 300 396.8069 295.8282 542.4253 

Map 2 500 399.0446 296.0836 529.9278 
     

Map 3 100 237.0556 184.1975 267.2522 

Map 3 300 261.6338 251.6303 340.0315 

Map 3 500 258.8238 182.5344 433.1237 
     

Map 4 100 247.3331 223.7597 335.6227 

Map 4 300 278.4244 223.6645 319.8824 

Map 4 500 272.7864 222.9630 318.2069 
     

Map 5 100 292.7153 180.5289 450.3051 

Map 5 300 296.0954 249.5646 349.7893 

Map 5 500 306.0244 247.9657 426.7358 
Table 2. Results for the path length in meters of the PRM 

 

Tracking time 

Map Nodes 
Average 

time 
Best time Worst time 

Map 1 100 52.4859 37.1094 81.2969 

Map 1 300 52.2677 35.8438 64.6562 

Map 1 500 47.8250 36.6094 63.6094 
     

Map 2 100 100.1974 75.8125 124.0312 

Map 2 300 92.1401 79.7656 111.6562 

Map 2 500 87.6182 78.6562 99.8438 
     

Map 3 100 91.4242 78.0312 104.5625 

Map 3 300 84.2688 74.2344 96.8750 

Map 3 500 79.6611 64.5625 98.8281 
     

Map 4 100 105.3875 80.3125 135.0938 

Map 4 300 93.7198 76.6094 124.7344 

Map 4 500 102.8958 95.1406 109.9062 
     

Map 5 100 92.3167 82.0781 103.6562 

Map 5 300 91.7129 76.4062 122.7969 

Map 5 500 71.6553 59.6719 88.0938 
Table 3. Results for the time in seconds of the PRM for 

path-following 
 

Generation and tracking time 

Map Nodes Average time 

Map 1 100 54.0886 

Map 1 300 54.3479 

Map 1 500 53.5563 
   

Map 2 100 101.2807 

Map 2 300 94.9766 

Map 2 500 93.0740 
   

Map 3 100 92.4781 

Map 3 300 87.1667 

Map 3 500 85.0801 
   

Map 4 100 106.4208 

Map 4 300 96.6354 

Map 4 500 108.1896 
   

Map 5 100 93.4375 

Map 5 300 94.7148 

Map 5 500 76.4229 
Table 4. Results for the time in seconds of the PRM for both 

path generation and path-following 
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4.2. Results of the A* algorithm 

The A* algorithm showed a deterministic characteristic, 

meaning that each time it is executed under the same initial 

conditions, it generates the same path. However, to compare 

it with the PRM algorithm, multiple tests were conducted to 

measure the path-generation time and the path-following 

time, thus recording a reliable database for comparison. 

In Tables 5, 6, 7, and 8, the results for the times and 

distances of the paths are shown, allowing for the following 

comparisons to be made. 

 

Generation time 

Map 
Average 

time 
Best time Worst time 

Map 1 3.9351 3.7969 4.1562 

Map 2 5.3469 5.1562 5.6094 

Map 3 12.3187 12.0312 12.6562 

Map 4 8.6344 8.2969 9.1250 

Map 5 32.5448 31.5625 33.8125 
Table 5. Results for the time in seconds of the A* algorithm 

to generate the path 

 

Path length 

Map Length 

Map 1 151.8823 

Map 2 193.4558 

Map 3 223.4558 

Map 4 274.9706 

Map 5 241.4558 
Table 6. Results for the path length in meters of the A* 

algorithm 

 

Tracking time 

Map 
Average 

time 
Best time Worst time 

Map 1 62.3365 57.0469 71.3125 

Map 2 93.5167 80.9375 110.9844 

Map 3 75.7281 67.4219 89.8438 

Map 4 73.8364 69.9688 81.0156 

Map 5 79.9698 75.8281 84.5781 
Table 7. Results for the time in seconds of the A* algorithm 

for path-following 

 

 

 
 

Generation and tracking time 

Map Average time 

Map 1 66.2716 

Map 2 98.8635 

Map 3 88.0469 

Map 4 82.4708 

Map 5 112.5146 
Table 8. Results for the time in seconds of the A* algorithm 

for both path generation and path-following 

 

4.3. Comparison between algorithms 

Analyzing the results obtained, significant differences can be 

observed depending on the map: 

• On simple maps (such as Map 4), the A* algorithm 

proved superior, generating faster and more efficient 

paths. 

• On maps with a moderate number of obstacles (such as 

Maps 1, 2, and 3), both algorithms yielded similar results 

in terms of distance and path-following time. 

• On complex maps (such as Map 5), the PRM 

outperformed the A* algorithm in terms of path 

generation time. 

The superior performance of the PRM on complex maps 

is attributed to its ability to generate paths more quickly, 

especially in situations where the search space is large, and 

obstacles are more restrictive. On the other hand, when 

comparing only the path-following times of the paths 

generated by both algorithms, no significant differences were 

identified, indicating that PRM's advantage lies solely in path 

generation time. 

As mentioned, a comparison was made between the 

results of the PRM with 500 nodes and the A* algorithm, as 

shown in Table 9. 

 

Generation and tracking time 

Map Average time A* Average time PRM 

Map 1 66.2716 53.5563 

Map 2 98.8635 93.0740 

Map 3 88.0469 85.0801 

Map 4 82.4708 108.1896 

Map 5 112.5146 76.4229 
Table 9. Generation and tracking time comparative between 

the A* algorithm and the PRM 

 

The A* algorithm stood out for having the least variation 

in its results due to its deterministic nature. However, it was 

the slowest in path generation, making it less ideal for 

applications where planning time is critical. 
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5. CONCLUSIONS 

The comparative analysis carried out between the PRM and 

A* algorithm allows for the identification of several strengths 

and areas for improvement. The PRM proved to be more 

efficient in terms of path generation time, especially in 

complex maps, where it significantly outperformed the A* 

algorithm. On the other hand, the A* algorithm stood out for 

its stability and consistency, as it generated more predictable 

results in both path distance and generation times. Despite the 

A* algorithm tending to generate shorter paths, the results 

showed that the time it takes for the robot to follow those 

paths is lower when using PRM with 500 nodes. This 

demonstrates that a shorter distance does not always result in 

shorter path-following time, as factors like the arrangement 

of the points on the path also influence the robot's 

performance. 

Both algorithms proved to be efficient and share great 

versatility as one of their key strengths. Path generation is 

independent of the type of robot that will carry out the 

navigation, allowing their application on different platforms, 

from differential robots to Ackerman robots or 

omnidirectional drive robots, with only minimal adjustments 

required for navigation and obstacle safety margins. 

In future work, it would be relevant to take the 

comparison of both algorithms to physical robots, evaluating 

their performance under real-world conditions and 

considering limitations imposed by hardware, such as sensors 

and motors. Additionally, exploring how different heuristic 

values affect the performance of the A* algorithm could 

provide valuable insights into the balance between generation 

time and path quality. Another interesting research avenue 

would be to delve into the computational and energy costs of 

both algorithms, which would provide significant value, 

especially in systems with limited resources such as small 

autonomous robots or drones. These explorations would help 

expand the applications and optimization of both algorithms 

in more complex and practical scenarios. 
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