
Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

126

A comparative analysis of the Probabilistic Roadmap Method and

the A* algorithm in autonomous mobile robot navigation
Sandra Alejandra Rodríguez Hernández, Ulises Orozco-Rosas*, Jesús Antonio Camacho González

CETYS Universidad, Av. CETYS Universidad No. 4. El Lago, C.P. 22210, Tijuana B.C., México

[sandra.hernandez]@cetys.edu.mx, [ulises.orozco, jesus.camacho]@cetys.mx

Abstract

Path planning is fundamental in autonomous navigation, especially in industrial environments with priorities for time efficiency and

optimal resource management. This work examines the Probabilistic Roadmap Method (PRM) and the A* algorithm, comparing

their path generation time, trajectory distance, and tracking time to determine which performs better under these metrics. For the

evaluation, both algorithms were implemented in MATLAB, and the CoppeliaSim simulator was used to model the movement of a

differential robot in different environments inspired by industrial work cells. Both algorithms stand out for their versatility, as path

generation is independent of the type of robot, allowing their application in differential, Ackermann, and omnidirectional robots

with minimal adjustments to navigation. Choosing the right path-planning algorithm can significantly enhance the performance of

robotic systems by reducing operational delays and optimizing efficiency in industrial environments. Understanding the differences

between these algorithms is crucial for improving navigation in structured spaces, such as industrial work cells, where safety and

efficiency are critical factors. By providing a detailed analysis of their performance, this research contributes to developing more

efficient robotic systems, particularly in scenarios where precise and reliable navigation is essential.

Key Words— A* Algorithm, Probabilistic Roadmap Method, Path Planning, Autonomous Navigation, Mobile Robots

Resumen

En la navegación autónoma, la planificación de rutas es un aspecto fundamental, especialmente en entornos industriales donde la

eficiencia en el tiempo y el uso óptimo de los recursos son prioritarios. En este trabajo, se comparan el método Probabilistic

Roadmap (PRM) y el algoritmo A* en términos de tiempo de generación de ruta, distancia de la trayectoria y tiempo de seguimiento.

El objetivo principal es determinar cuál de los dos algoritmos ofrece un mejor desempeño bajo estas métricas. Para llevar a cabo

la evaluación, se implementaron ambos algoritmos en MATLAB y se utilizó el simulador CoppeliaSim para modelar el movimiento

de un robot diferencial en distintos entornos inspirados en celdas de trabajo industriales. Ambos algoritmos destacan por su

versatilidad, ya que la generación de rutas es independiente del tipo de robot, lo que permite su aplicación en robots diferenciales,

Ackermann y omnidireccionales con ajustes mínimos en la navegación. Seleccionar el algoritmo de planificación de rutas adecuado

puede mejorar significativamente el desempeño de los sistemas robóticos, reduciendo retrasos operativos y optimizando la

eficiencia en entornos industriales. Comprender las diferencias entre estos algoritmos es fundamental para mejorar la navegación

en espacios estructurados, como celdas de trabajo industriales, donde la seguridad y la eficiencia son aspectos críticos. Al

proporcionar un análisis detallado de su desempeño, esta investigación contribuye al desarrollo de sistemas robóticos más

eficientes, especialmente en escenarios donde la navegación precisa y confiable es esencial.

Palabras Clave— Algoritmo A*, Probabilistic Roadmap, Planificación de Trayectoria, Navegación Autónoma, Robots Móviles

1. INTRODUCTION

There is a constant pursuit of faster and more efficient path-

planning algorithms, especially in an industrial environment

where time directly impacts production and the limited

available resources. This leads to the implementation of

navigation algorithms that ensure reaching the goal as quickly

and safely as possible [1].

Among the classical autonomous navigation algorithms

are the Probabilistic Roadmap Method (PRM) and the A*

algorithm. These algorithms have proven effective,

successfully generating feasible paths in known

environments. However, in industrial applications, such as

material transportation, it is important to ensure successful

transport and complete it in the shortest possible time and

with maximum safety [2].

Therefore, it is essential to evaluate the performance of

these algorithms in terms of path generation time, path length,

and tracking time [3]. This is because the shortest path does

not always guarantee the lowest tracking time.

This study presents a comparison between the PRM and

the A* algorithm to assess their performance in known

environments. The path planning is implemented on a

differential robot within different scenarios inspired by the

layout of industrial work cells, using the CoppeliaSim

simulator.

2. THEORETICAL FRAMEWORK

Path planning is the process by which a robot or autonomous

system determines the optimal route to move from a starting

* Corresponding author.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

127

point to a specific destination [4]. This process involves using

algorithms to evaluate possible trajectories, considering

factors such as distance, the presence of obstacles, and

environmental constraints [5]. Path planning is essential for

autonomous navigation, enabling the robot to move

efficiently and safely within its operational environment [6].

Focusing on path planning, this work addresses two of

the most employed alternatives, the A* algorithm, and the

Probabilistic Roadmap Method. The A* (A-star) algorithm

is a search and path-planning algorithm. It is an extension of

Dijkstra's algorithm that incorporates a heuristic to improve

search efficiency.

The algorithm evaluates each node based on two costs:

the accumulated cost from the start to the current node, 𝑔(𝑛),

and a heuristic estimate of the cost from the current node to

the goal, ℎ(𝑛). The sum of these costs guides the search,

allowing the selection of the node with the lowest value, 𝑓(𝑛),

as can be seen in Eq. 1.

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

The process starts with the initial node and expands

neighboring nodes, moving each evaluated node from the

open set (nodes yet to be explored) to the closed set (nodes

already explored). If a node provides a shorter path, its costs

are updated, and it is added to the open set. This process

repeats until the goal node is found or the open set is

exhausted. Once the goal is reached, the optimal path is

reconstructed by tracing back from the goal node to the start

node [7].

The Probabilistic Roadmap Method (PRM) is a path-

planning technique used in robotics. It consists of two main

phases: the construction phase and the query phase.

In the construction phase, a series of nodes are randomly

generated within the free configuration space (the space

where the robot can move without colliding). Nearby nodes

are connected by direct paths if these paths do not intersect

obstacles, forming a graph of possible routes. In the query

phase, the start and goal points are added to the graph and

connected to the nearest existing nodes [8].

Now, once the path has been planned, we require the

controller to track the resultant path. The Pure Pursuit

controller is available in MATLAB. Pure Pursuit is a path-

tracking algorithm that calculates the angular velocity

command to steer the robot, assuming a constant linear

velocity, from its current position toward a look-ahead point

in front of the robot. The algorithm then moves the look-

ahead point along the path based on the robot's current

position until reaching the final point of the trajectory [9].

The controllerPurePursuit object is not a

traditional controller but rather a tracking algorithm for path-

following purposes. Desired linear velocities and maximum

angular velocities can be specified, and these properties are

defined based on the vehicle's specifications.

Metrics for evaluating the planning algorithms. Initially,

multiple experiments were conducted with different

parameter values for each algorithm, defining these

parameters empirically.

The performance of the PRM depends on the number of

nodes provided to the algorithm. Therefore, experiments were

conducted with three different values: 100, 300, and 500

nodes. The goal was to determine the optimal number of

nodes that provide the best balance between the route

generation time, the robot's tracking time within the

simulation, and the shortest path length.

To determine the required number of repetitions for

reliable data, preliminary test runs were performed. Using a

20% margin of error and a 90% confidence level, it was

determined that 67-68 samples were needed for each node

count and each map.

Similarly, for the A* algorithm, the number of repetitions

was calculated to ensure reliable data. With a 20% margin of

error based on the standard deviation and a 90% confidence

level, a sample size of 67.5 was obtained, which was rounded

to 68 samples per map.

These tests were used to select the optimal number of

nodes for the PRM and the heuristic for the A* algorithm. For

PRM, 100, 300, and 500 nodes were tested, while for A*, a

heuristic value of √2 was chosen.

3. PROPOSAL

It is essential to define the research objectives, which in this

case focus on determining which algorithm offers a shorter

time for both path planning and the robot's path-following

process. Time and distance play a crucial role in this work, as

they are the key parameters used to measure the efficiency of

the algorithms [10].

The programming will be carried out in MATLAB,

where the map and algorithms will be implemented to

generate both the paths and the robot's velocities, allowing

simulations to be performed later in the CoppeliaSim

environment. A black-and-white image is used, where black

regions represent obstacles. The image is converted to PGM

format, where each pixel is assigned a value normalized to

either 1 or 0. Values of 1 represent obstacles, while 0

represents free space within the map. Once the map is

represented as a matrix, the start and goal coordinates are

defined within MATLAB. It is important to ensure that these

locations are within free space; otherwise, the algorithm will

indicate that generating a path is not possible.

Once the start and goal points are defined, the mapping

process begins using the selected algorithm. For the PRM, a

specific number of nodes is required. This algorithm

generates nodes in random positions outside the obstacles and

establishes connections between nearby nodes, provided a

direct line can be drawn without intersecting obstacles. Three

different node counts will be tested: 100, 300, and 500, to find

a balance between computation time and the quality of the

generated path.

On the other hand, the A* algorithm requires an initial

heuristic value. A higher heuristic value can result in longer

paths but reduces the computational cost, decreasing the

processing time. In this case, a constant heuristic value of √2

will be used since the grid created by the algorithm has unit

distances of 1 per side. Once the heuristic is defined, a cost

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

128

map is generated, containing the cost values between nodes

and the accessible points for the path (i.e., those not occupied

by obstacles).

Experimental Environment. To validate the efficiency

of the algorithms, a realistic simulation environment is

created in CoppeliaSim, due to its versatility in designing

scenarios and its ability to consider factors such as gravity and

collisions. The environment is constructed using prismatic

objects that simulate the arrangement of tables in industrial

work cells. The PRM and A* algorithm will be tested on five

different maps—four of them based on typical work cell

layouts and one designed to challenge the algorithms by

incorporating an obstacle that forces the search for alternative

routes. The map images are shown in Fig. 1.

Fig.1. Maps used with their corresponding start and goal

points

Variables and configurations. The variables to be

evaluated are the route generation time, the time taken by the

robot to follow the route, and the length of the route. To

measure the generation time, the MATLAB “cputime”

function is used, which records the time in seconds spent by

the processor executing the program instructions. The time is

measured by placing the function before and after the

corresponding code and calculating the difference, as shown

in Eq. 2.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑎𝑙𝐻𝑜𝑢𝑟 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑜𝑢𝑟 (2)

Subsequently, the Pure Pursuit controller from

MATLAB is implemented for path-following. This controller

uses a look-ahead point with a distance of 0.3 units and the

points from the generated path to guide the robot. Since it is a

differential drive robot, the wheel speeds are calculated using

specific equations for its movement. The velocities of each

wheel of the robot need to be obtained. For this, the equations

shown in Eq. 3 and Eq. 4 are used.

𝑉𝑙 =
𝜐 − 𝜔 ∗

0.3309
2

0.195
 (3)

𝑉𝑟 =
𝜐 + 𝜔 ∗

0.3309
2

0.195
 (4)

The connection between MATLAB and CoppeliaSim is

made through the simulator's Remote API, ensuring that the

necessary files (remApi.m, remoteApi.dll, and

remoteApiProto.m) are present in the working directory.

During the path-following process, the "plotTransforms"

function in MATLAB is used to visualize the robot's position

and orientation in real time, verifying how the robot follows

the planned trajectory. Once the path is completed, the

simulation process is finished and the connection between

MATLAB and CoppeliaSim is terminated.

To measure the time, it takes for the robot to follow the

path, the "cputime" function is used again. In this case, it is

placed at the beginning and end of the path, before

terminating the connection between the programs. The same

procedure used for calculating the path generation time is

applied, and the difference is calculated as shown in Eq. 5.

𝐹𝑜𝑙𝑙𝑜𝑤𝑇𝑖𝑚𝑒 = 𝐹𝑖𝑛𝑎𝑙𝐻𝑜𝑢𝑟 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐻𝑜𝑢𝑟 (5)

To obtain the total distance, the "dist" function is used,

which measures the distance between two points. Therefore,

to obtain the total distance, the function is applied to the list

of coordinates output by the algorithms when generating the

path.

4. RESULTS

A total of 68 samples were taken for each algorithm

configuration on each map, ensuring a 90% confidence level

in the results obtained.

4.1. Results of the PRM

For the PRM, configurations with 100, 300, and 500 nodes

were tested. As expected, when using 100 nodes, the path

generation time was lower compared to the case with 500

nodes, as shown in Table 1.

However, it was observed that the results in terms of

distance and path-following time were significantly better

when using 500 nodes, as shown in Table 2 and Table 3. This

is because a higher number of nodes provides better resultant

paths with shorter lengths, at the cost of slightly increased

computation time.

For this reason, the comparison between the PRM and A*

algorithm was carried out with the 500-node configuration, as

the additional time required for path generation with 500

nodes is compensated by the improvement in trajectory

quality and efficiency in path-following, as shown in Table 4.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

129

Generation time

Map Nodes
Average

time Best time Worst time

Map 1 100 1.6026 1.3438 2.1094

Map 1 300 2.0802 1.3750 3.2500

Map 1 500 5.7313 5.1875 8.4219

Map 2 100 1.0833 0.9375 1.3281

Map 2 300 2.8365 2.5156 3.1250

Map 2 500 5.4557 5.0312 6.1406

Map 3 100 1.0539 0.9688 1.2969

Map 3 300 2.8979 2.7344 3.1406

Map 3 500 5.4190 5.0625 5.9844

Map 4 100 1.0333 0.9375 1.1719

Map 4 300 2.9156 2.6094 3.4844

Map 4 500 5.2938 4.9688 5.7500

Map 5 100 1.1208 0.9688 1.6719

Map 5 300 3.0020 2.6875 3.3906

Map 5 500 4.7676 4.3594 5.8906
Table 1. Results showing the time in seconds for the PRM to

generate the path

Path length

Map Nodes
Average
length Best length

Worst
length

Map 1 100 157.8630 125.8899 207.7826

Map 1 300 157.8626 128.0059 201.8299

Map 1 500 165.0253 129.1917 191.9098

Map 2 100 355.3018 114.7656 692.1785

Map 2 300 396.8069 295.8282 542.4253

Map 2 500 399.0446 296.0836 529.9278

Map 3 100 237.0556 184.1975 267.2522

Map 3 300 261.6338 251.6303 340.0315

Map 3 500 258.8238 182.5344 433.1237

Map 4 100 247.3331 223.7597 335.6227

Map 4 300 278.4244 223.6645 319.8824

Map 4 500 272.7864 222.9630 318.2069

Map 5 100 292.7153 180.5289 450.3051

Map 5 300 296.0954 249.5646 349.7893

Map 5 500 306.0244 247.9657 426.7358
Table 2. Results for the path length in meters of the PRM

Tracking time

Map Nodes
Average

time
Best time Worst time

Map 1 100 52.4859 37.1094 81.2969

Map 1 300 52.2677 35.8438 64.6562

Map 1 500 47.8250 36.6094 63.6094

Map 2 100 100.1974 75.8125 124.0312

Map 2 300 92.1401 79.7656 111.6562

Map 2 500 87.6182 78.6562 99.8438

Map 3 100 91.4242 78.0312 104.5625

Map 3 300 84.2688 74.2344 96.8750

Map 3 500 79.6611 64.5625 98.8281

Map 4 100 105.3875 80.3125 135.0938

Map 4 300 93.7198 76.6094 124.7344

Map 4 500 102.8958 95.1406 109.9062

Map 5 100 92.3167 82.0781 103.6562

Map 5 300 91.7129 76.4062 122.7969

Map 5 500 71.6553 59.6719 88.0938
Table 3. Results for the time in seconds of the PRM for

path-following

Generation and tracking time

Map Nodes Average time

Map 1 100 54.0886

Map 1 300 54.3479

Map 1 500 53.5563

Map 2 100 101.2807

Map 2 300 94.9766

Map 2 500 93.0740

Map 3 100 92.4781

Map 3 300 87.1667

Map 3 500 85.0801

Map 4 100 106.4208

Map 4 300 96.6354

Map 4 500 108.1896

Map 5 100 93.4375

Map 5 300 94.7148

Map 5 500 76.4229
Table 4. Results for the time in seconds of the PRM for both

path generation and path-following

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

130

4.2. Results of the A* algorithm

The A* algorithm showed a deterministic characteristic,

meaning that each time it is executed under the same initial

conditions, it generates the same path. However, to compare

it with the PRM algorithm, multiple tests were conducted to

measure the path-generation time and the path-following

time, thus recording a reliable database for comparison.

In Tables 5, 6, 7, and 8, the results for the times and

distances of the paths are shown, allowing for the following

comparisons to be made.

Generation time

Map
Average

time
Best time Worst time

Map 1 3.9351 3.7969 4.1562

Map 2 5.3469 5.1562 5.6094

Map 3 12.3187 12.0312 12.6562

Map 4 8.6344 8.2969 9.1250

Map 5 32.5448 31.5625 33.8125
Table 5. Results for the time in seconds of the A* algorithm

to generate the path

Path length

Map Length

Map 1 151.8823

Map 2 193.4558

Map 3 223.4558

Map 4 274.9706

Map 5 241.4558
Table 6. Results for the path length in meters of the A*

algorithm

Tracking time

Map
Average

time
Best time Worst time

Map 1 62.3365 57.0469 71.3125

Map 2 93.5167 80.9375 110.9844

Map 3 75.7281 67.4219 89.8438

Map 4 73.8364 69.9688 81.0156

Map 5 79.9698 75.8281 84.5781
Table 7. Results for the time in seconds of the A* algorithm

for path-following

Generation and tracking time

Map Average time

Map 1 66.2716

Map 2 98.8635

Map 3 88.0469

Map 4 82.4708

Map 5 112.5146
Table 8. Results for the time in seconds of the A* algorithm

for both path generation and path-following

4.3. Comparison between algorithms

Analyzing the results obtained, significant differences can be

observed depending on the map:

• On simple maps (such as Map 4), the A* algorithm

proved superior, generating faster and more efficient

paths.

• On maps with a moderate number of obstacles (such as

Maps 1, 2, and 3), both algorithms yielded similar results

in terms of distance and path-following time.

• On complex maps (such as Map 5), the PRM

outperformed the A* algorithm in terms of path

generation time.

The superior performance of the PRM on complex maps

is attributed to its ability to generate paths more quickly,

especially in situations where the search space is large, and

obstacles are more restrictive. On the other hand, when

comparing only the path-following times of the paths

generated by both algorithms, no significant differences were

identified, indicating that PRM's advantage lies solely in path

generation time.

As mentioned, a comparison was made between the

results of the PRM with 500 nodes and the A* algorithm, as

shown in Table 9.

Generation and tracking time

Map Average time A* Average time PRM

Map 1 66.2716 53.5563

Map 2 98.8635 93.0740

Map 3 88.0469 85.0801

Map 4 82.4708 108.1896

Map 5 112.5146 76.4229
Table 9. Generation and tracking time comparative between

the A* algorithm and the PRM

The A* algorithm stood out for having the least variation

in its results due to its deterministic nature. However, it was

the slowest in path generation, making it less ideal for

applications where planning time is critical.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

131

5. CONCLUSIONS

The comparative analysis carried out between the PRM and

A* algorithm allows for the identification of several strengths

and areas for improvement. The PRM proved to be more

efficient in terms of path generation time, especially in

complex maps, where it significantly outperformed the A*

algorithm. On the other hand, the A* algorithm stood out for

its stability and consistency, as it generated more predictable

results in both path distance and generation times. Despite the

A* algorithm tending to generate shorter paths, the results

showed that the time it takes for the robot to follow those

paths is lower when using PRM with 500 nodes. This

demonstrates that a shorter distance does not always result in

shorter path-following time, as factors like the arrangement

of the points on the path also influence the robot's

performance.

Both algorithms proved to be efficient and share great

versatility as one of their key strengths. Path generation is

independent of the type of robot that will carry out the

navigation, allowing their application on different platforms,

from differential robots to Ackerman robots or

omnidirectional drive robots, with only minimal adjustments

required for navigation and obstacle safety margins.

In future work, it would be relevant to take the

comparison of both algorithms to physical robots, evaluating

their performance under real-world conditions and

considering limitations imposed by hardware, such as sensors

and motors. Additionally, exploring how different heuristic

values affect the performance of the A* algorithm could

provide valuable insights into the balance between generation

time and path quality. Another interesting research avenue

would be to delve into the computational and energy costs of

both algorithms, which would provide significant value,

especially in systems with limited resources such as small

autonomous robots or drones. These explorations would help

expand the applications and optimization of both algorithms

in more complex and practical scenarios.

6. REFERENCES

[1] U. Orozco-Rosas, K. Picos and O. Montiel, "Hybrid Path

Planning Algorithm Based on Membrane Pseudo-Bacterial

Potential Field for Autonomous Mobile Robots," IEEE

Access, vol. 7, pp. 156787 - 156803, 2019.

[2] U. Orozco-Rosas, O. Montiel and R. Sepúlveda, "Mobile

robot path planning using membrane evolutionary artificial

potential field," Applied Soft Computing, vol. 77, pp. 236-

251, 2019.

[3] U. Orozco-Rosas, K. Picos, J. J. Pantrigo, A. S. Montemayor

and A. Cuesta-Infante, "Mobile Robot Path Planning Using a

QAPF Learning Algorithm for Known and Unknown

Environments," IEEE Access, vol. 10, pp. 84648-84663,

2022.

[4] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza,

Introduction to Autonomous Mobile Robots, Cambridge,

MA: The MIT Press, 2004.

[5] U. Orozco-Rosas, K. Picos and O. Montiel, "Acceleration of

Path Planning Computation Based on Evolutionary Artificial

Potential Field for Non-static Environments," in Intuitionistic

and Type-2 Fuzzy Logic Enhancements in Neural and

Optimization Algorithms: Theory and Applications, Studies

in Computational Intelligence, volume 862, Springer, 2020,

pp. 271-297.

[6] S. Shekhar, R. Vaishnav, A. Kumari, S. Gautam and S.

Banerjee, "Quantitative Comparison of Path Planning

Algorithms in Simulated Environment," in International

Conference on Artificial Intelligence and Machine Learning

Applications Theme: Healthcare and Internet of Things

(AIMLA), 2024.

[7] S. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach, Pearson Series in Artificial Intelligence, 2021.

[8] S. M. Lavalle, Planning Algorithms, Cambridge University

Press, 2006.

[9] Y. Chen, Y. Shan, L. Chen, K. Huang and D. Cao,

"Optimization of Pure Pursuit Controller based on PID

Controller and Low-pass Filter," in International Conference

on Intelligent Transportation Systems (ITSC), 2018.

[10] U. Orozco-Rosas, K. Picos, O. Montiel and O. Castillo,

"Environment Recognition for Path Generation in

Autonomous Mobile Robots," in Hybrid Intelligent Systems

in Control, Pattern Recognition and Medicine, Studies in

Computational Intelligence, volume 827, Springer, 2020, pp.

273-288.

