
Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

132

Path Planning on Jetson Platform for a Differential Robot

Osiel Gastélum Zazueta, William Arad Chávez Borrego, Camila Magdaleno López, Ulises Orozco-Rosas*, Kenia Picos

CETYS Universidad, Av. CETYS Universidad No. 4. El Lago, C.P. 22210, Tijuana B.C., México

[gastelum.osiel, william.chavez, camilal]@cetys.edu.mx, [ulises.orozco, kenia.picos]@cetys.mx

Abstract

This work presents the development and implementation of an autonomous navigation system for the TurtleBot 2 robot, leveraging

the ROS (Robot Operating System) framework. The system integrates a discrete path-planning algorithm to achieve an efficient and

adaptive trajectory. The proposed approach utilizes the A* algorithm for path planning. The TurtleBot 2 is a widely recognized

mobile robot platform designed for research and education in robotics. At the same time, the Jetson TX2 is a compact, high-

performance computing board that facilitates real-time processing and AI integration. The results validate the proposed system's

performance, highlighting the robot's ability to follow predefined paths, maintain accurate positioning, and reach goals efficiently.

This work demonstrates the feasibility of integrating discrete path planning techniques with robotics frameworks, providing valuable

insights into autonomous navigation challenges and solutions in robotics research and development.

Key Words— Autonomous Navigation, Robot Operating System, Jetson TX2, Path Planning, Mobile Robots

Resumen

Este trabajo presenta el desarrollo e implementación de un sistema de navegación autónoma para el robot TurtleBot 2,

aprovechando el marco de trabajo ROS (Robot Operating System). El sistema integra un algoritmo de planificación discreta para

lograr una trayectoria eficiente y adaptable. El enfoque propuesto utiliza el algoritmo A* para la planificación de trayectoria. El

TurtleBot 2 es una plataforma de robot móvil ampliamente reconocida, diseñada tanto para investigación como para educación en

robótica, mientras que la Jetson TX2 es una tarjeta de desarrollo compacta y de alto rendimiento que facilita el procesamiento en

tiempo real e integración de inteligencia artificial. Al combinar estas tecnologías, el sistema garantiza una navegación confiable.

Los resultados validan el rendimiento del sistema propuesto, destacando la capacidad del robot para seguir rutas predefinidas,

mantener una posición precisa y alcanzar la meta de forma eficiente. Este trabajo demuestra la viabilidad de integrar técnicas de

planificación discreta para robótica, proporcionando información valiosa sobre los desafíos y soluciones en la navegación

autónoma en investigación y desarrollo en robótica.

Palabras Clave— Navegación Autónoma, Robot Operating System, Jetson TX2, Planificación de Rutas, Robótica Móvil

1. INTRODUCTION

Navigating autonomously is critical in mobile robotics, with

applications ranging from industrial automation to

exploratory missions [1]. This research focuses on developing

a robust control system for TurtleBot 2, to enhance trajectory

tracking. These systems empower robots to make decisions

independently by leveraging advanced sensing, data-driven

computing, and control frameworks [2].

Despite significant progress, achieving full autonomy

remains a challenge due to dynamic environmental factors,

such as obstacles, changing weather, and noisy sensor inputs

[3]. Current approaches often rely on modular frameworks

(software frameworks include support programs, compilers,

code libraries, tool sets, and application programming

interfaces that bring together the different components to

enable the development of a project or solution)

encompassing perception, mapping, planning, and decision-

making.

While effective for structured environments, these

systems lack adaptability to the unstructured and

unpredictable nature of real-world conditions [4]. Enhancing

localization and environmental understanding is critical for

achieving higher levels of autonomy. This can be addressed

by combining robust sensing methods, machine learning

algorithms, and real-time processing frameworks.

This work builds upon these principles by implementing

an autonomous navigation system for the TurtleBot 2. By

employing discrete path-planning techniques and using the

Robot Operating System (ROS), the system integrates data to

achieve precise trajectory tracking, such as Von Neumann

and Moore neighborhood models, and incorporates sensor

feedback. This study demonstrates the feasibility of bridging

the gap between simulation and real-world performance. This

work aims to contribute to the field of mobile robotics by

improving the adaptability and efficiency of navigation in

complex environments.

 * Corresponding author.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

133

2. THEORETICAL FRAMEWORK

This section presents the core concepts of trajectory planning

in robotics, emphasizing discrete state spaces and path-

planning algorithms. It explores models for representing

system states and actions, as well as search algorithms like

A*, which optimize navigation while considering obstacles

and environmental constraints.

2.1 Discrete Planning in Robotics

Path planning is a problem that requires finding a continuous

path between a given start point and the goal point. For a

particular system, subject to a variety of constraints, discrete

planning in robotics relies on the concept of state spaces,

where every possible configuration of the world is

represented as a state, and available actions transform the

current state into a new one [5].

This model is fundamental for trajectory planning,

especially in environments with obstacles. A precise

definition of the state space is critical, as it encompasses all

possible system configurations, enabling algorithms to

efficiently find viable solutions [6].

Each action executed by the robot results in a transition

from its current state 𝑥 to a new state 𝑥′, mathematically

represented as: 𝑥′ = 𝑓(𝑥, 𝑢), where 𝑢 is the applied action.

State spaces must be finite and countable for effective discrete

planning [7].

The Von Neumann and Moore neighborhood models are

essential in modeling transitions in grid-based systems, see

Fig. 1. The Von Neumann model considers four orthogonally

adjacent cells, while the Moore model includes all eight

surrounding cells, enabling greater freedom of movement.

These models are critical for structured robotic navigation and

obstacle avoidance.

Fig. 1: a) Von Neumann neighborhood (b) Moore neighborhood

2.2 Path Planning with Obstacles

Path planning focuses on creating the shortest path from the

source to the destination while considering data from the

robot's environment. A critical aspect of this process is

obstacle avoidance, which ensures the robot can navigate

safely and efficiently in complex environments [8]. Among

various approaches, the A* algorithm is a widely used method

for finding optimal paths in environments with obstacles.

The A* algorithm operates on a graph-based

representation of the environment and systematically

evaluates potential routes from the source to the destination.

It calculates a cost for each node based on two components:

𝑔(𝑛), the actual cost from the starting node to the current

node, and ℎ(𝑛), a heuristic estimate of the cost from the

current node to the goal. The total cost, represented as

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), guides the algorithm to explore the

most promising paths first.

The strength of the A* algorithm lies in its ability to

combine accuracy with efficiency. By using heuristics

tailored to the specific environment, such as Euclidean or

Manhattan distance, the A* algorithm minimizes unnecessary

exploration and reduces computational overhead. This makes

it highly effective for navigating structured and semi-

structured environments with static or moderately dynamic

obstacles.

Robots utilizing the A* algorithm benefit from precise

and adaptable trajectory planning, ensuring they can avoid

obstacles and reach their goals optimally. Additionally, the

A* algorithm is versatile and extensible, allowing for

enhancements such as adaptive heuristics or dynamic

replanning, enabling robots to handle more complex and

rapidly changing scenarios [9].

The pseudocode shown in Fig. 2 outlines the core steps

of the A* algorithm, which systematically evaluates potential

paths while ensuring obstacle avoidance and cost

optimization.

Fig. 2: The A* algorithm

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

134

3. PROPOSAL

This study examines autonomous navigation in mobile robots.

Using TurtleBot 2, the focus is on path planning and an

accurate trajectory tracking in both simulated and real-world

environments.

In this work, the navigation is performed in static

environments. In dynamic environments to complement the

path-planning approach, the sensors enhance the robot’s

ability to maintain accurate navigation by correcting

deviations caused by environmental changes or sensor noise.

In our case, the system is validated through a

combination of simulation and physical experiments. In the

simulation phase, the Gazebo environment is used to test

TurtleBot 2’s performance in navigating complex scenarios

with varying obstacle configurations. The physical tests will

extend these evaluations to real-world conditions, analyzing

the system’s trajectory accuracy, obstacle avoidance

efficiency, and overall reliability.

Fig. 3: System block diagram

Fig. 3 shows the proposed system architecture for

autonomous navigation using the TurtleBot 2 robot. The

process begins with defining the state problem, which

establishes the robot’s initial position 𝐗𝐢, and the target

position 𝐗𝐆. To achieve this goal, the system integrates key

inputs such as environmental maps that represent the

navigation space [10].

These maps allow the system to understand the

surroundings and locate the robot’s starting and goal positions

within the environment. Once the state and inputs are defined,

the focus shifts to the planning algorithm, where the A*

algorithm is implemented. This algorithm computes the

optimal path by generating a sequence of positions that

efficiently lead the robot from the initial position to the goal.

With the optimal path determined, the navigation module

translates this path into actionable commands. The positions

calculated by the planning algorithm are converted into a

series of directions. These commands are sent to the robot’s

control system through ROS, allowing TurtleBot 2 to follow

the planned trajectory effectively.

The final stage is the execution phase, where the robot

performs the movements according to the given commands.

Throughout this process, the system verifies whether the

robot has reached its goal position, ensuring accurate

trajectory tracking. This step also accounts for potential

deviations caused by environmental changes, allowing the

system to correct the robot’s path as needed.

Fig. 4 shows the flowchart that outlines the main

structure of the code, detailing the sequence of operations for

TurtleBot 2’s autonomous navigation system. The program

begins with the initialization of ROS. It then enters a

continuous loop where the A* algorithm processes the map

and computes the optimal path. This path is converted into

motion commands and sent to the robot for execution.

Fig. 4: Main program flow chart

4. TESTING AND VALIDATION

The primary objective of the testing phase was to validate the

proposed path-planning solution within a simulated

environment. These tests aimed to ensure the efficiency and

accuracy of the navigation algorithm while evaluating the

system's performance under different conditions.

Conversely, the validation process involved the

execution of multiple scenarios within a 10 × 10 grid

environment, incorporating static obstacles to assess the

agent's ability to find an optimal path. The tests were

conducted using a standardized set of initial and goal

positions, with predefined obstacle placements. The

experiments were run ten times each one to identify any

inconsistencies and ensure repeatability.

During real-world operation, the TurtleBot 2 relies on its

onboard sensors to navigate the environment. The primary

sensors used include a LiDAR scanner for obstacle detection

and wheel encoders for odometry-based position estimation.

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

135

However, since the planned paths were precomputed in the

simulation, real-time obstacle detection was not required

during the execution phase. The robot followed the

predefined trajectory without actively re-evaluating its

surroundings, assuming a static environment, meaning real-

time obstacle detection was not necessary during execution.

These maps were loaded into the simulation, and the

algorithm selected the appropriate map based on the test

scenario being executed, ensuring that all test runs followed

the same obstacle distribution and making the results directly

comparable. In the physical execution using the TurtleBot 2,

the robot followed the precomputed paths without performing

real-time obstacle detection, as the environment was assumed

to be identical to the simulation

To further analyze the performance of the proposed

navigation approach, execution times were recorded for both

the simulated algorithm and the physical implementation

using the TurtleBot 2 platform. In the simulation, execution

time was measured as the total duration from the moment the

algorithm started computing the path until it successfully

reached the goal position. This included both the

computational time required to generate the path and the

simulated travel time based on the agent’s movement model.

Try Map 1 Map 2 Map 3 Map 4 Map 5

1 23 15.97 22.95 19.05 12.48

2 21.98 16.46 21.05 21.87 14.61

3 21.18 16.2 22.76 22.94 15.16

4 22.65 14.37 21.3 23.69 17.16

5 23.22 16.09 22.293 20.54 16.83

6 22.65 15.24 22.19 23 16.02

7 20.56 15.84 22.17 23.7 16.21

8 22.8 14.34 22.34 23.17 14.15

9 22.14 16.15 21.71 22.62 17.7

10 19.64 15.69 22.85 22.77 15.43

Avg 21.982 15.635 22.161 22.335 15.575

SdDev 1.1693 0.75 0.639 1.479 1.561

Table 1: Path-planning algorithm execution time (ms)

For the physical execution, the recorded execution time

corresponded to the actual duration taken by the TurtleBot 2

to follow the planned path from start to goal, considering its

real-world movement constraints. Table 1 presents the

execution times of the algorithm in the simulated 10×10 grid

environment, highlighting the computational efficiency

across different test scenarios. Meanwhile, Table 2

summarizes the execution times observed when executing the

planned paths on the TurtleBot 2, providing insights into the

real-world feasibility of the solution. These results help assess

the algorithm’s scalability and practical applicability in

dynamic environments.

In Table 1, the metric represents the time required by the

algorithm to compute a path within the simulated 10×10 grid

environment, considering predefined obstacle placements.

The recorded values reflect the computational efficiency of

the path-planning process, measuring how quickly the

algorithm can generate a feasible trajectory before execution.

Try Map 1 Map 2 Map 3 Map 4 Map 5

1 32.183 64.883 51.362 42.914 56.646

2 32.183 64.898 51.381 42.912 56.613

3 32.173 64.922 51.392 42.895 56.639

4 32.19 64.896 51.363 42.92 56.585

5 32.156 64.915 51.267 42.911 56.612

6 32.151 64.909 51.328 42.912 56.596

7 32.173 64.896 51.366 42.911 56.643

8 32.186 64.904 51.366 42.899 56.646

9 32.171 64.89 51.335 42.891 56.643

10 32.184 64.885 51.324 42.983 56.612

Avg 32.175 64.9 51.348 42.915 56.624

SdDev 0.0129 0.0127 0.0362 0.0256 0.0226

Table 2: TurtletBot 2’s trajectory travel time (s)

In Table 2, the metric represents the time required by the

TurtleBot 2 to physically traverse the planned path and reach

its goal. The recorded values reflect the overall execution

performance in a real-world setting, accounting for factors

such as motor response, control accuracy, wheel slip, and

environmental conditions

Fig. 5: Map 1 Fig. 6: Map 2

The first test scenario referred to as Map 1 involves

navigating the agent from the starting position at coordinates

(2,2) to the target at (7,7), see Fig. 5 where the origin is

Test

Test

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

136

located at the left-bottom corner (0,0). This map includes a

series of static obstacles placed strategically to evaluate the

algorithm. The system was evaluated based on the following

parameters:

● Execution Time: Measured in milliseconds (ms) to

capture minor variations.

● Path Accuracy: Ensuring the agent reaches the target

while avoiding obstacles.

● Scalability: Testing the algorithm under varying

complexity levels of ability to calculate an efficient and

collision-free path.

The second test scenario, Map 2, assesses the agent's

ability to navigate from the starting position at coordinates

(1,0) to the target at (3,6), see Fig. 6. This map introduces a

different obstacle arrangement, designed to challenge the

algorithm’s adaptability. The evaluation criteria remain

consistent, determining the algorithm’s efficiency in handling

more complex navigation tasks. Consistent performance

across multiple runs is crucial as it demonstrates the reliability

and stability of the system under varying conditions. It

ensures that the navigation algorithm can be trusted to

perform effectively in real-world applications, reducing the

likelihood of unexpected failures.

The physical implementation of the TurtleBot 2 involved

translating the navigation algorithm from the simulation

environment into a real-world robot system. One of the

critical challenges in the physical environment was ensuring

that the robot could maintain precise control over its

movement despite external factors like wheel slippage, sensor

inaccuracies, and environmental noise. The robot's

performance was evaluated by running the algorithm multiple

times across different obstacle configurations to ensure

consistent results.

Fig. 7: Map 3 Fig. 8: Map 4

This step was crucial in validating the theoretical models

and algorithms developed during the simulation phase,

whereas the TurtleBot 2 successfully navigated through a

complex environment. Additional testing scenarios were

conducted to further validate the algorithm's performance.

These scenarios include navigating the agent across different

obstacle configurations with the following start and target

coordinates: Map 3 from (9,4) to (1,1), see Fig. 7; Map 4 from

(1,1) to (5,6), see Fig. 8; and Map 5 from (2,0) to (9,8), see

Fig. 9.

The same evaluation criteria were applied to these

scenarios, focusing on execution time, path accuracy, and

obstacle avoidance. The tests were successful, with the agent

consistently reaching the target positions without collisions,

demonstrating the reliability and effectiveness of the path

planning solution.

Fig. 9: Map 5

The navigation process on the physical TurtleBot 2 was

built on the same core principles used in the simulation, but it

included additional real-world considerations; based on the

same maps, TurtleBot 2 conducted excellent physical tests.

The robot successfully navigated from the starting position to

the target coordinates without collisions, accurately following

the planned path. Despite the challenges posed by the obstacle

arrangements, the TurtleBot 2 demonstrated precise

movement and responsiveness, validating the algorithm's

effectiveness in real-world conditions. The tests confirmed

that the system's execution was reliable, with consistent

performance across multiple runs. This successful outcome

demonstrates the robustness and accuracy of the navigation

strategy implemented in this project.

5. RESULTS

The performance of the autonomous navigation system for the

TurtleBot 2 robot was evaluated through extensive testing in

both simulated and physical environments. The key

evaluation criteria were execution time, path accuracy, and

scalability, all tested across distinct map scenarios.

5.1 Simulation Results

In the simulation phase, multiple tests were conducted on a

10 × 10 grid with static obstacles placed strategically to

challenge the algorithm’s ability to find optimal paths. In the

Map 1 scenario, where the robot started at coordinates (2,2)

and targeted (7,7), the average execution time for calculating

the optimal path was measured at 21.982 milliseconds. This

demonstrated a slower response despite the simplicity of the

obstacle arrangement. For Map 2, with a starting point of (1,0)

and a target at (3,6), the execution time was slightly lower at

an average of 15.635 milliseconds, attributed to the algorithm

having to explore fewer spaces than Map 1.

Regarding path accuracy, the algorithm successfully

guided the robot to the target positions in all maps without

collisions. The robot consistently reached its destination

Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.12, Núm. 20. Año 2025

137

while avoiding obstacles, highlighting the high accuracy of

the pathfinding. The A* algorithm was able to effectively

handle obstacle avoidance and trajectory optimization,

ensuring that the robot followed the planned path precisely.

When it came to scalability, the algorithm demonstrated

its ability to maintain performance even as the map

complexity increased in Map 2. Despite the addition of more

obstacles, this benefits the speed of the process by not

increasing the algorithm process values related to blocked

cells present on the map.

5.2 Physical Implementation Results

The implementation was carried out using a TurtleBot 2

platform with a Nvidia Jetson TX2 as the main computer as

shown in Fig. 10. For the physical implementation, tests were

conducted under similar conditions to those of the simulation.

The performance in the real world was evaluated by running

the system across different obstacle configurations multiple

times, see Fig. 10. The execution times in the physical tests

ranged from 130 to 160 milliseconds, which were slightly

higher than the simulation due to real-world factors like

sensor noise and wheel slippage. In terms of path accuracy,

the TurtleBot 2 was able to adjust its course in response to

deviations caused by external factors such as surface

irregularities or sensor inaccuracies, confirming the

algorithm’s capability to handle real-world challenges while

maintaining precise navigation.

Fig. 10: Physical implementation

Lastly, the system’s reliability was evident in its

consistent performance across multiple runs. TurtleBot 2 was

able to navigate without collisions in various environments,

demonstrating its ability to adapt well to unexpected changes.

This highlights the stability and reliability of the path-

planning solution in real-world applications.

The results from both simulation and physical testing

corroborate each other, confirming the effectiveness of the

proposed navigation system. The algorithm showed

adaptability to different obstacle arrangements, and the robot

demonstrated reliable behavior in both simulated and physical

settings. These results validate the use of discrete path-

planning algorithms like A* for autonomous navigation,

making the system suitable for real-world deployment in

mobile robotics.

6. CONCLUSIONS

In conclusion, this work demonstrated the effectiveness and

robustness of a navigation algorithm implemented on

TurtleBot 2, both in simulation and physical tests. By utilizing

a navigation system, the robot successfully navigated from a

starting position to a target in a complex environment.

The system's performance in the physical environment

validated the results obtained from simulations, confirming

that the algorithm can adapt to various obstacle configurations

while ensuring precise and collision-free navigation. The tests

indicated consistent performance across multiple runs,

highlighting the system's stability and reliability for real-

world applications, such as autonomous delivery robots or

self-driving vehicles. Future work may involve implementing

dynamic path-planning algorithms and integrating additional

sensors to further enhance the system's efficiency and

versatility in different environments.

On this foundation, this work illustrates the capability of

robotic systems to perform complex navigation tasks and

provides a solid foundation for future developments in

autonomous robotics, expanding the potential applications of

such systems in real-world scenarios.

7. REFERENCES

[1] U. Orozco-Rosas, K. Picos and O. Montiel, "Hybrid Path

Planning Algorithm Based on Membrane Pseudo-Bacterial

Potential Field for Autonomous Mobile Robots," IEEE Access,

vol. 7, pp. 156787 - 156803, 2019.

[2] R. C. Shit, "Precise localization for achieving next-generation

autonomous navigation: State-of-the-art, taxonomy and future

prospects," Computer Communications, vol. 160, pp. 351-374,

2020.

[3] V. Sezer and M. Gokasan, "A novel obstacle avoidance

algorithm: “Follow the Gap Method”," Robotics and

Autonomous Systems, vol. 60, no. 9, pp. 1123-1134, 2012.

[4] D. Serrano, "Middleware and Software Frameworks in Robotics

- Applicability to Small Unmanned Vehicles," North Atlantic

Treaty Organization, Brussels, 2015.

[5] M. A. Contreras-Cruz, V. Ayala-Ramirez and U. H. Hernandez-

Belmonte, "Mobile robot path planning using artificial bee

colony and evolutionary programming," Applied Soft

Computing, vol. 30, no. 1, pp. 319-328, 2015.

[6] U. Orozco-Rosas, O. Montiel and R. Sepúlveda, "Parallel

Evolutionary Artificial Potential Field for Path Planning—An

Implementation on GPU," in Design of Intelligent Systems

Based on Fuzzy Logic, Neural Networks and Nature-Inspired

Optimization, Studies in Computational Intelligence, vol 601,

Springer, 2015.

[7] S. M. Lavalle, Planning Algorithms, Cambridge University

Press, 2006.

[8] U. Orozco-Rosas, O. Montiel and R. Sepúlveda, "Mobile robot

path planning using membrane evolutionary artificial potential

field," Applied Soft Computing, vol. 77, pp. 236-251, 2019.

[9] W. Kowalczyk, M. Przybyla and K. Kozlowski, "Set-point

Control of Mobile Robot with Obstacle Detection and

Avoidance Using Navigation Function - Experimental

Verification," J Intell Robot Syst, vol. 85, p. 539–552, 2017.

[10] K. Katona, H. A. Neamah and P. Korondi, "Obstacle Avoidance

and Path Planning Methods for Autonomous Navigation of

Mobile Robot," Sensors, vol. 24, no. 11, p. 3573, 2024.

