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Abstract 

This work presents the development and implementation of an autonomous navigation system for the TurtleBot 2 robot, leveraging 

the ROS (Robot Operating System) framework. The system integrates a discrete path-planning algorithm to achieve an efficient and 

adaptive trajectory. The proposed approach utilizes the A* algorithm for path planning. The TurtleBot 2 is a widely recognized 

mobile robot platform designed for research and education in robotics. At the same time, the Jetson TX2 is a compact, high-

performance computing board that facilitates real-time processing and AI integration. The results validate the proposed system's 

performance, highlighting the robot's ability to follow predefined paths, maintain accurate positioning, and reach goals efficiently. 

This work demonstrates the feasibility of integrating discrete path planning techniques with robotics frameworks, providing valuable 

insights into autonomous navigation challenges and solutions in robotics research and development. 
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Resumen 

Este trabajo presenta el desarrollo e implementación de un sistema de navegación autónoma para el robot TurtleBot 2, 

aprovechando el marco de trabajo ROS (Robot Operating System). El sistema integra un algoritmo de planificación discreta para 

lograr una trayectoria eficiente y adaptable. El enfoque propuesto utiliza el algoritmo A* para la planificación de trayectoria. El 

TurtleBot 2 es una plataforma de robot móvil ampliamente reconocida, diseñada tanto para investigación como para educación en 

robótica, mientras que la Jetson TX2 es una tarjeta de desarrollo compacta y de alto rendimiento que facilita el procesamiento en 

tiempo real e integración de inteligencia artificial. Al combinar estas tecnologías, el sistema garantiza una navegación confiable. 

Los resultados validan el rendimiento del sistema propuesto, destacando la capacidad del robot para seguir rutas predefinidas, 

mantener una posición precisa y alcanzar la meta de forma eficiente. Este trabajo demuestra la viabilidad de integrar técnicas de 

planificación discreta para robótica, proporcionando información valiosa sobre los desafíos y soluciones en la navegación 

autónoma en investigación y desarrollo en robótica.  

Palabras Clave— Navegación Autónoma, Robot Operating System, Jetson TX2, Planificación de Rutas, Robótica Móvil 

 

1. INTRODUCTION 

Navigating autonomously is critical in mobile robotics, with 

applications ranging from industrial automation to 

exploratory missions [1]. This research focuses on developing 

a robust control system for TurtleBot 2, to enhance trajectory 

tracking. These systems empower robots to make decisions 

independently by leveraging advanced sensing, data-driven 

computing, and control frameworks [2]. 

Despite significant progress, achieving full autonomy 

remains a challenge due to dynamic environmental factors, 

such as obstacles, changing weather, and noisy sensor inputs 

[3]. Current approaches often rely on modular frameworks 

(software frameworks include support programs, compilers, 

code libraries, tool sets, and application programming 

interfaces that bring together the different components to 

enable the development of a project or solution) 

encompassing perception, mapping, planning, and decision-

making. 

While effective for structured environments, these 

systems lack adaptability to the unstructured and 

unpredictable nature of real-world conditions [4]. Enhancing 

localization and environmental understanding is critical for 

achieving higher levels of autonomy. This can be addressed 

by combining robust sensing methods, machine learning 

algorithms, and real-time processing frameworks. 

This work builds upon these principles by implementing 

an autonomous navigation system for the TurtleBot 2. By 

employing discrete path-planning techniques and using the 

Robot Operating System (ROS), the system integrates data to 

achieve precise trajectory tracking, such as Von Neumann 

and Moore neighborhood models, and incorporates sensor 

feedback. This study demonstrates the feasibility of bridging 

the gap between simulation and real-world performance. This 

work aims to contribute to the field of mobile robotics by 

improving the adaptability and efficiency of navigation in 

complex environments. 

 

 * Corresponding author. 
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2. THEORETICAL FRAMEWORK 

This section presents the core concepts of trajectory planning 

in robotics, emphasizing discrete state spaces and path-

planning algorithms. It explores models for representing 

system states and actions, as well as search algorithms like 

A*, which optimize navigation while considering obstacles 

and environmental constraints. 

2.1 Discrete Planning in Robotics 

Path planning is a problem that requires finding a continuous 

path between a given start point and the goal point. For a 

particular system, subject to a variety of constraints, discrete 

planning in robotics relies on the concept of state spaces, 

where every possible configuration of the world is 

represented as a state, and available actions transform the 

current state into a new one [5]. 

This model is fundamental for trajectory planning, 

especially in environments with obstacles. A precise 

definition of the state space is critical, as it encompasses all 

possible system configurations, enabling algorithms to 

efficiently find viable solutions [6]. 

Each action executed by the robot results in a transition 

from its current state 𝑥 to a new state 𝑥′, mathematically 

represented as:  𝑥′ =  𝑓(𝑥, 𝑢), where 𝑢 is the applied action. 

State spaces must be finite and countable for effective discrete 

planning [7]. 

The Von Neumann and Moore neighborhood models are 

essential in modeling transitions in grid-based systems, see 

Fig. 1. The Von Neumann model considers four orthogonally 

adjacent cells, while the Moore model includes all eight 

surrounding cells, enabling greater freedom of movement. 

These models are critical for structured robotic navigation and 

obstacle avoidance. 

 

 

Fig. 1: a) Von Neumann neighborhood (b) Moore neighborhood 

 

2.2 Path Planning with Obstacles  

Path planning focuses on creating the shortest path from the 

source to the destination while considering data from the 

robot's environment. A critical aspect of this process is 

obstacle avoidance, which ensures the robot can navigate 

safely and efficiently in complex environments [8]. Among 

various approaches, the A* algorithm is a widely used method 

for finding optimal paths in environments with obstacles. 

 

The A* algorithm operates on a graph-based 

representation of the environment and systematically 

evaluates potential routes from the source to the destination. 

It calculates a cost for each node based on two components: 

𝑔(𝑛), the actual cost from the starting node to the current 

node, and ℎ(𝑛), a heuristic estimate of the cost from the 

current node to the goal. The total cost, represented as 

𝑓(𝑛)  =  𝑔(𝑛)  +  ℎ(𝑛), guides the algorithm to explore the 

most promising paths first. 

The strength of the A* algorithm lies in its ability to 

combine accuracy with efficiency. By using heuristics 

tailored to the specific environment, such as Euclidean or 

Manhattan distance, the A* algorithm minimizes unnecessary 

exploration and reduces computational overhead. This makes 

it highly effective for navigating structured and semi-

structured environments with static or moderately dynamic 

obstacles. 

Robots utilizing the A* algorithm benefit from precise 

and adaptable trajectory planning, ensuring they can avoid 

obstacles and reach their goals optimally. Additionally, the 

A* algorithm is versatile and extensible, allowing for 

enhancements such as adaptive heuristics or dynamic 

replanning, enabling robots to handle more complex and 

rapidly changing scenarios [9]. 

The pseudocode shown in Fig. 2 outlines the core steps 

of the A* algorithm, which systematically evaluates potential 

paths while ensuring obstacle avoidance and cost 

optimization. 

 

 

Fig. 2: The A* algorithm 
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3. PROPOSAL 

This study examines autonomous navigation in mobile robots. 

Using TurtleBot 2, the focus is on path planning and an 

accurate trajectory tracking in both simulated and real-world 

environments. 

In this work, the navigation is performed in static 

environments. In dynamic environments to complement the 

path-planning approach, the sensors enhance the robot’s 

ability to maintain accurate navigation by correcting 

deviations caused by environmental changes or sensor noise. 

In our case, the system is validated through a 

combination of simulation and physical experiments. In the 

simulation phase, the Gazebo environment is used to test 

TurtleBot 2’s performance in navigating complex scenarios 

with varying obstacle configurations. The physical tests will 

extend these evaluations to real-world conditions, analyzing 

the system’s trajectory accuracy, obstacle avoidance 

efficiency, and overall reliability. 

 

 

Fig. 3: System block diagram 

Fig. 3 shows the proposed system architecture for 

autonomous navigation using the TurtleBot 2 robot. The 

process begins with defining the state problem, which 

establishes the robot’s initial position 𝐗𝐢, and the target 

position 𝐗𝐆. To achieve this goal, the system integrates key 

inputs such as environmental maps that represent the 

navigation space [10]. 

These maps allow the system to understand the 

surroundings and locate the robot’s starting and goal positions 

within the environment. Once the state and inputs are defined, 

the focus shifts to the planning algorithm, where the A* 

algorithm is implemented. This algorithm computes the 

optimal path by generating a sequence of positions that 

efficiently lead the robot from the initial position to the goal. 

With the optimal path determined, the navigation module 

translates this path into actionable commands. The positions 

calculated by the planning algorithm are converted into a 

series of directions. These commands are sent to the robot’s 

control system through ROS, allowing TurtleBot 2 to follow 

the planned trajectory effectively. 

The final stage is the execution phase, where the robot 

performs the movements according to the given commands. 

Throughout this process, the system verifies whether the 

robot has reached its goal position, ensuring accurate 

trajectory tracking. This step also accounts for potential 

deviations caused by environmental changes, allowing the 

system to correct the robot’s path as needed. 

Fig. 4 shows the flowchart that outlines the main 

structure of the code, detailing the sequence of operations for 

TurtleBot 2’s autonomous navigation system. The program 

begins with the initialization of ROS. It then enters a 

continuous loop where the A* algorithm processes the map 

and computes the optimal path. This path is converted into 

motion commands and sent to the robot for execution. 

 

 

Fig. 4: Main program flow chart 

4. TESTING AND VALIDATION 

The primary objective of the testing phase was to validate the 

proposed path-planning solution within a simulated 

environment. These tests aimed to ensure the efficiency and 

accuracy of the navigation algorithm while evaluating the 

system's performance under different conditions. 

Conversely, the validation process involved the 

execution of multiple scenarios within a 10 × 10 grid 

environment, incorporating static obstacles to assess the 

agent's ability to find an optimal path. The tests were 

conducted using a standardized set of initial and goal 

positions, with predefined obstacle placements. The 

experiments were run ten times each one to identify any 

inconsistencies and ensure repeatability. 

During real-world operation, the TurtleBot 2 relies on its 

onboard sensors to navigate the environment. The primary 

sensors used include a LiDAR scanner for obstacle detection 

and wheel encoders for odometry-based position estimation. 
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However, since the planned paths were precomputed in the 

simulation, real-time obstacle detection was not required 

during the execution phase. The robot followed the 

predefined trajectory without actively re-evaluating its 

surroundings, assuming a static environment, meaning real-

time obstacle detection was not necessary during execution. 

These maps were loaded into the simulation, and the 

algorithm selected the appropriate map based on the test 

scenario being executed, ensuring that all test runs followed 

the same obstacle distribution and making the results directly 

comparable. In the physical execution using the TurtleBot 2, 

the robot followed the precomputed paths without performing 

real-time obstacle detection, as the environment was assumed 

to be identical to the simulation 

To further analyze the performance of the proposed 

navigation approach, execution times were recorded for both 

the simulated algorithm and the physical implementation 

using the TurtleBot 2 platform. In the simulation, execution 

time was measured as the total duration from the moment the 

algorithm started computing the path until it successfully 

reached the goal position. This included both the 

computational time required to generate the path and the 

simulated travel time based on the agent’s movement model. 

 

Try Map 1 Map 2 Map 3 Map 4 Map 5 

1 23 15.97 22.95 19.05 12.48 

2 21.98 16.46 21.05 21.87 14.61 

3 21.18 16.2 22.76 22.94 15.16 

4 22.65 14.37 21.3 23.69 17.16 

5 23.22 16.09 22.293 20.54 16.83 

6 22.65 15.24 22.19 23 16.02 

7 20.56 15.84 22.17 23.7 16.21 

8 22.8 14.34 22.34 23.17 14.15 

9 22.14 16.15 21.71 22.62 17.7 

10 19.64 15.69 22.85 22.77 15.43 

Avg 21.982 15.635 22.161 22.335 15.575 

SdDev 1.1693 0.75 0.639 1.479 1.561 

Table 1: Path-planning algorithm execution time (ms) 

For the physical execution, the recorded execution time 

corresponded to the actual duration taken by the TurtleBot 2 

to follow the planned path from start to goal, considering its 

real-world movement constraints. Table 1 presents the 

execution times of the algorithm in the simulated 10×10 grid 

environment, highlighting the computational efficiency 

across different test scenarios. Meanwhile, Table 2 

summarizes the execution times observed when executing the 

planned paths on the TurtleBot 2, providing insights into the 

real-world feasibility of the solution. These results help assess 

the algorithm’s scalability and practical applicability in 

dynamic environments. 

In Table 1, the metric represents the time required by the 

algorithm to compute a path within the simulated 10×10 grid 

environment, considering predefined obstacle placements. 

The recorded values reflect the computational efficiency of 

the path-planning process, measuring how quickly the 

algorithm can generate a feasible trajectory before execution. 

 

Try Map 1 Map 2 Map 3 Map 4 Map 5 

1 32.183 64.883 51.362 42.914 56.646 

2 32.183 64.898 51.381 42.912 56.613 

3 32.173 64.922 51.392 42.895 56.639 

4 32.19 64.896 51.363 42.92 56.585 

5 32.156 64.915 51.267 42.911 56.612 

6 32.151 64.909 51.328 42.912 56.596 

7 32.173 64.896 51.366 42.911 56.643 

8 32.186 64.904 51.366 42.899 56.646 

9 32.171 64.89 51.335 42.891 56.643 

10 32.184 64.885 51.324 42.983 56.612 

Avg 32.175 64.9 51.348 42.915 56.624 

SdDev 0.0129 0.0127 0.0362 0.0256 0.0226 

Table 2: TurtletBot 2’s trajectory travel time (s) 

 

In Table 2, the metric represents the time required by the 

TurtleBot 2 to physically traverse the planned path and reach 

its goal. The recorded values reflect the overall execution 

performance in a real-world setting, accounting for factors 

such as motor response, control accuracy, wheel slip, and 

environmental conditions 

 

  

Fig. 5: Map 1  Fig. 6: Map 2 

The first test scenario referred to as Map 1 involves 

navigating the agent from the starting position at coordinates 

(2,2) to the target at (7,7), see Fig. 5 where the origin is 

Test 

Test 
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located at the left-bottom corner (0,0). This map includes a 

series of static obstacles placed strategically to evaluate the 

algorithm. The system was evaluated based on the following 

parameters: 

● Execution Time: Measured in milliseconds (ms) to 

capture minor variations. 

● Path Accuracy: Ensuring the agent reaches the target 

while avoiding obstacles. 

● Scalability: Testing the algorithm under varying 

complexity levels of ability to calculate an efficient and 

collision-free path.  

The second test scenario, Map 2, assesses the agent's 

ability to navigate from the starting position at coordinates 

(1,0) to the target at (3,6), see Fig. 6. This map introduces a 

different obstacle arrangement, designed to challenge the 

algorithm’s adaptability. The evaluation criteria remain 

consistent, determining the algorithm’s efficiency in handling 

more complex navigation tasks. Consistent performance 

across multiple runs is crucial as it demonstrates the reliability 

and stability of the system under varying conditions. It 

ensures that the navigation algorithm can be trusted to 

perform effectively in real-world applications, reducing the 

likelihood of unexpected failures. 

The physical implementation of the TurtleBot 2 involved 

translating the navigation algorithm from the simulation 

environment into a real-world robot system. One of the 

critical challenges in the physical environment was ensuring 

that the robot could maintain precise control over its 

movement despite external factors like wheel slippage, sensor 

inaccuracies, and environmental noise. The robot's 

performance was evaluated by running the algorithm multiple 

times across different obstacle configurations to ensure 

consistent results. 

 

  

Fig. 7: Map 3  Fig. 8: Map 4 

This step was crucial in validating the theoretical models 

and algorithms developed during the simulation phase, 

whereas the TurtleBot 2 successfully navigated through a 

complex environment. Additional testing scenarios were 

conducted to further validate the algorithm's performance. 

These scenarios include navigating the agent across different 

obstacle configurations with the following start and target 

coordinates: Map 3 from (9,4) to (1,1), see Fig. 7; Map 4 from 

(1,1) to (5,6), see Fig. 8; and Map 5 from (2,0) to (9,8), see 

Fig. 9. 

The same evaluation criteria were applied to these 

scenarios, focusing on execution time, path accuracy, and 

obstacle avoidance. The tests were successful, with the agent 

consistently reaching the target positions without collisions, 

demonstrating the reliability and effectiveness of the path 

planning solution. 

 

 

Fig. 9: Map 5 

The navigation process on the physical TurtleBot 2 was 

built on the same core principles used in the simulation, but it 

included additional real-world considerations; based on the 

same maps, TurtleBot 2 conducted excellent physical tests. 

The robot successfully navigated from the starting position to 

the target coordinates without collisions, accurately following 

the planned path. Despite the challenges posed by the obstacle 

arrangements, the TurtleBot 2 demonstrated precise 

movement and responsiveness, validating the algorithm's 

effectiveness in real-world conditions. The tests confirmed 

that the system's execution was reliable, with consistent 

performance across multiple runs. This successful outcome 

demonstrates the robustness and accuracy of the navigation 

strategy implemented in this project. 

 

5. RESULTS 

The performance of the autonomous navigation system for the 

TurtleBot 2 robot was evaluated through extensive testing in 

both simulated and physical environments. The key 

evaluation criteria were execution time, path accuracy, and 

scalability, all tested across distinct map scenarios. 

5.1 Simulation Results 

In the simulation phase, multiple tests were conducted on a 

10 × 10 grid with static obstacles placed strategically to 

challenge the algorithm’s ability to find optimal paths. In the 

Map 1 scenario, where the robot started at coordinates (2,2) 

and targeted (7,7), the average execution time for calculating 

the optimal path was measured at 21.982 milliseconds. This 

demonstrated a slower response despite the simplicity of the 

obstacle arrangement. For Map 2, with a starting point of (1,0) 

and a target at (3,6), the execution time was slightly lower at 

an average of 15.635 milliseconds, attributed to the algorithm 

having to explore fewer spaces than Map 1. 

Regarding path accuracy, the algorithm successfully 

guided the robot to the target positions in all maps without 

collisions. The robot consistently reached its destination 
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while avoiding obstacles, highlighting the high accuracy of 

the pathfinding. The A* algorithm was able to effectively 

handle obstacle avoidance and trajectory optimization, 

ensuring that the robot followed the planned path precisely. 

When it came to scalability, the algorithm demonstrated 

its ability to maintain performance even as the map 

complexity increased in Map 2. Despite the addition of more 

obstacles, this benefits the speed of the process by not 

increasing the algorithm process values related to blocked 

cells present on the map. 

 

5.2 Physical Implementation Results 

The implementation was carried out using a TurtleBot 2 

platform with a Nvidia Jetson TX2 as the main computer as 

shown in Fig. 10. For the physical implementation, tests were 

conducted under similar conditions to those of the simulation. 

The performance in the real world was evaluated by running 

the system across different obstacle configurations multiple 

times, see Fig. 10. The execution times in the physical tests 

ranged from 130 to 160 milliseconds, which were slightly 

higher than the simulation due to real-world factors like 

sensor noise and wheel slippage. In terms of path accuracy, 

the TurtleBot 2 was able to adjust its course in response to 

deviations caused by external factors such as surface 

irregularities or sensor inaccuracies, confirming the 

algorithm’s capability to handle real-world challenges while 

maintaining precise navigation. 

 

 

Fig. 10: Physical implementation 

Lastly, the system’s reliability was evident in its 

consistent performance across multiple runs. TurtleBot 2 was 

able to navigate without collisions in various environments, 

demonstrating its ability to adapt well to unexpected changes. 

This highlights the stability and reliability of the path-

planning solution in real-world applications. 

The results from both simulation and physical testing 

corroborate each other, confirming the effectiveness of the 

proposed navigation system. The algorithm showed 

adaptability to different obstacle arrangements, and the robot 

demonstrated reliable behavior in both simulated and physical 

settings. These results validate the use of discrete path-

planning algorithms like A* for autonomous navigation, 

making the system suitable for real-world deployment in 

mobile robotics. 

 

6. CONCLUSIONS 

In conclusion, this work demonstrated the effectiveness and 

robustness of a navigation algorithm implemented on 

TurtleBot 2, both in simulation and physical tests. By utilizing 

a navigation system, the robot successfully navigated from a 

starting position to a target in a complex environment. 

The system's performance in the physical environment 

validated the results obtained from simulations, confirming 

that the algorithm can adapt to various obstacle configurations 

while ensuring precise and collision-free navigation. The tests 

indicated consistent performance across multiple runs, 

highlighting the system's stability and reliability for real-

world applications, such as autonomous delivery robots or 

self-driving vehicles. Future work may involve implementing 

dynamic path-planning algorithms and integrating additional 

sensors to further enhance the system's efficiency and 

versatility in different environments. 

On this foundation, this work illustrates the capability of 

robotic systems to perform complex navigation tasks and 

provides a solid foundation for future developments in 

autonomous robotics, expanding the potential applications of 

such systems in real-world scenarios. 
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