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Abstract

This work presents the development and implementation of an autonomous navigation system for the TurtleBot 2 robot, leveraging
the ROS (Robot Operating System) framework. The system integrates a discrete path-planning algorithm to achieve an efficient and
adaptive trajectory. The proposed approach utilizes the A* algorithm for path planning. The TurtleBot 2 is a widely recognized
mobile robot platform designed for research and education in robotics. At the same time, the Jetson TX2 is a compact, high-
performance computing board that facilitates real-time processing and Al integration. The results validate the proposed system's
performance, highlighting the robot's ability to follow predefined paths, maintain accurate positioning, and reach goals efficiently.
This work demonstrates the feasibility of integrating discrete path planning techniques with robotics frameworks, providing valuable
insights into autonomous navigation challenges and solutions in robotics research and development.
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Resumen

Este trabajo presenta el desarrollo e implementacion de un sistema de navegacion autonoma para el robot TurtleBot 2,
aprovechando el marco de trabajo ROS (Robot Operating System). El sistema integra un algoritmo de planificacion discreta para
lograr una trayectoria eficiente y adaptable. El enfoque propuesto utiliza el algoritmo A* para la planificacion de trayectoria. El
TurtleBot 2 es una plataforma de robot movil ampliamente reconocida, disefiada tanto para investigacion como para educacion en
robotica, mientras que la Jetson TX2 es una tarjeta de desarrollo compacta y de alto rendimiento que facilita el procesamiento en
tiempo real e integracion de inteligencia artificial. Al combinar estas tecnologias, el sistema garantiza una navegacion confiable.
Los resultados validan el rendimiento del sistema propuesto, destacando la capacidad del robot para seguir rutas predefinidas,
mantener una posicion precisa y alcanzar la meta de forma eficiente. Este trabajo demuestra la viabilidad de integrar técnicas de
planificacion discreta para robdtica, proporcionando informacion valiosa sobre los desafios y soluciones en la navegacion
autonoma en investigacion y desarrollo en robdtica.

Palabras Clave— Navegacion Autonoma, Robot Operating System, Jetson TX2, Planificacion de Rutas, Robotica Mévil

1. INTRODUCTION

Navigating autonomously is critical in mobile robotics, with
applications ranging from industrial automation to
exploratory missions [1]. This research focuses on developing
a robust control system for TurtleBot 2, to enhance trajectory
tracking. These systems empower robots to make decisions
independently by leveraging advanced sensing, data-driven
computing, and control frameworks [2].

" Despite significant progress, achieving full autonomy
remains a challenge due to dynamic environmental factors,
such as obstacles, changing weather, and noisy sensor inputs
[3]. Current approaches often rely on modular frameworks
(software frameworks include support programs, compilers,
code libraries, tool sets, and application programming
interfaces that bring together the different components to
enable the development of a project or solution)
encompassing perception, mapping, planning, and decision-
making.

* Corresponding author.

While effective for structured environments, these
systems lack adaptability to the unstructured and
unpredictable nature of real-world conditions [4]. Enhancing
localization and environmental understanding is critical for
achieving higher levels of autonomy. This can be addressed
by combining robust sensing methods, machine learning
algorithms, and real-time processing frameworks.

This work builds upon these principles by implementing
an autonomous navigation system for the TurtleBot 2. By
employing discrete path-planning techniques and using the
Robot Operating System (ROS), the system integrates data to
achieve precise trajectory tracking, such as Von Neumann
and Moore neighborhood models, and incorporates sensor
feedback. This study demonstrates the feasibility of bridging
the gap between simulation and real-world performance. This
work aims to contribute to the field of mobile robotics by
improving the adaptability and efficiency of navigation in
complex environments.
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2. THEORETICAL FRAMEWORK

This section presents the core concepts of trajectory planning
in robotics, emphasizing discrete state spaces and path-
planning algorithms. It explores models for representing
system states and actions, as well as search algorithms like
A*, which optimize navigation while considering obstacles
and environmental constraints.

2.1 Discrete Planning in Robotics

Path planning is a problem that requires finding a continuous
path between a given start point and the goal point. For a
particular system, subject to a variety of constraints, discrete
planning in robotics relies on the concept of state spaces,
where every possible configuration of the world is
represented as a state, and available actions transform the
current state into a new one [5].

This model is fundamental for trajectory planning,
especially in environments with obstacles. A precise
definition of the state space is critical, as it encompasses all
possible system configurations, enabling algorithms to
efficiently find viable solutions [6].

Each action executed by the robot results in a transition
from its current state x to a new state x', mathematically
represented as: x' = f(x,u), where u is the applied action.
State spaces must be finite and countable for effective discrete
planning [7].

The Von Neumann and Moore neighborhood models are
essential in modeling transitions in grid-based systems, see
Fig. 1. The Von Neumann model considers four orthogonally
adjacent cells, while the Moore model includes all eight
surrounding cells, enabling greater freedom of movement.
These models are critical for structured robotic navigation and
obstacle avoidance.

(a) (b)

Fig. 1: a) Von Neumann neighborhood (b) Moore neighborhood

2.2 Path Planning with Obstacles

Path planning focuses on creating the shortest path from the
source to the destination while considering data from the
robot's environment. A critical aspect of this process is
obstacle avoidance, which ensures the robot can navigate
safely and efficiently in complex environments [8]. Among
various approaches, the A* algorithm is a widely used method
for finding optimal paths in environments with obstacles.

The A* algorithm operates on a graph-based
representation of the environment and systematically
evaluates potential routes from the source to the destination.
It calculates a cost for each node based on two components:
g(n), the actual cost from the starting node to the current
node, and h(n), a heuristic estimate of the cost from the
current node to the goal. The total cost, represented as
f(n) = g(n) + h(n), guides the algorithm to explore the
most promising paths first.

The strength of the A* algorithm lies in its ability to
combine accuracy with efficiency. By using heuristics
tailored to the specific environment, such as Euclidean or
Manbhattan distance, the A* algorithm minimizes unnecessary
exploration and reduces computational overhead. This makes
it highly effective for navigating structured and semi-
structured environments with static or moderately dynamic
obstacles.

Robots utilizing the A* algorithm benefit from precise
and adaptable trajectory planning, ensuring they can avoid
obstacles and reach their goals optimally. Additionally, the
A* algorithm is versatile and extensible, allowing for
enhancements such as adaptive heuristics or dynamic
replanning, enabling robots to handle more complex and
rapidly changing scenarios [9].

The pseudocode shown in Fig. 2 outlines the core steps
of the A* algorithm, which systematically evaluates potential
paths while ensuring obstacle avoidance and cost
optimization.

1: Initialize: OPEN list < {} (empty list)
2. Initialize: CLOSED list +— {} (empty list)
4 Create goal node, call it node_goal
1. Create start node, call it node_start
5 Add node_start to the OPEN list

t: while OPEN list is not empty do

T: Get node n from the OPEN list with the lowest f(n)
& Add n to the CLOSED list.

9: if n is the same as node_goal then

10: return Solution(n)

11 clse

12 Generate each successor node n' of n

1% for each successor node n' of n do

14: Set. parent of n' to n

15: Set h(n') as the heuristie distance to node_goal

16 Set g(n') = g(n) + cost(n,n’)

17: Set f(n') = g(n’) + h(n")

18: if n'is in OPEN list and the existing n’ is better or equal
then

1% continue

2 end if

21: if 7' is in CLOSED list and the existing n' is beller or equal
then

22: continue

2% end if

24 Remove occurrences of n' from OPEN and CLOSED

25 Add n' to the OPEN list

i end for

27: end if

28: end while

29: return failure: No solution exisis

Fig. 2: The A* algorithm
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3. PROPOSAL

This study examines autonomous navigation in mobile robots.
Using TurtleBot 2, the focus is on path planning and an
accurate trajectory tracking in both simulated and real-world
environments.

In this work, the navigation is performed in static
environments. In dynamic environments to complement the
path-planning approach, the sensors enhance the robot’s
ability to maintain accurate navigation by correcting
deviations caused by environmental changes or sensor noise.

In our case, the system is validated through a
combination of simulation and physical experiments. In the
simulation phase, the Gazebo environment is used to test
TurtleBot 2’s performance in navigating complex scenarios
with varying obstacle configurations. The physical tests will
extend these evaluations to real-world conditions, analyzing
the system’s trajectory accuracy, obstacle avoidance
efficiency, and overall reliability.

State Problem

System Inputs

Planning A* (A-Star) Imp

Algorithin

Converts the path into a vector
Navigation of o s
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Fig. 3: System block diagram

Fig. 3 shows the proposed system architecture for
autonomous navigation using the TurtleBot 2 robot. The
process begins with defining the state problem, which
establishes the robot’s initial position Xi, and the target
position XG. To achieve this goal, the system integrates key
inputs such as environmental maps that represent the
navigation space [10].

These maps allow the system to understand the
surroundings and locate the robot’s starting and goal positions
within the environment. Once the state and inputs are defined,
the focus shifts to the planning algorithm, where the A*
algorithm is implemented. This algorithm computes the
optimal path by generating a sequence of positions that
efficiently lead the robot from the initial position to the goal.

With the optimal path determined, the navigation module
translates this path into actionable commands. The positions
calculated by the planning algorithm are converted into a
series of directions. These commands are sent to the robot’s
control system through ROS, allowing TurtleBot 2 to follow
the planned trajectory effectively.

The final stage is the execution phase, where the robot
performs the movements according to the given commands.
Throughout this process, the system verifies whether the
robot has reached its goal position, ensuring accurate
trajectory tracking. This step also accounts for potential
deviations caused by environmental changes, allowing the
system to correct the robot’s path as needed.

Fig. 4 shows the flowchart that outlines the main
structure of the code, detailing the sequence of operations for
TurtleBot 2°s autonomous navigation system. The program
begins with the initialization of ROS. It then enters a
continuous loop where the A* algorithm processes the map
and computes the optimal path. This path is converted into
motion commands and sent to the robot for execution.
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Fig. 4: Main program flow chart
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4. TESTING AND VALIDATION

The primary objective of the testing phase was to validate the
proposed path-planning solution within a simulated
environment. These tests aimed to ensure the efficiency and
accuracy of the navigation algorithm while evaluating the
system's performance under different conditions.

Conversely, the validation process involved the
execution of multiple scenarios within a 10 X 10 grid
environment, incorporating static obstacles to assess the
agent's ability to find an optimal path. The tests were
conducted using a standardized set of initial and goal
positions, with predefined obstacle placements. The
experiments were run ten times each one to identify any
inconsistencies and ensure repeatability.

During real-world operation, the TurtleBot 2 relies on its
onboard sensors to navigate the environment. The primary
sensors used include a LIDAR scanner for obstacle detection
and wheel encoders for odometry-based position estimation.
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However, since the planned paths were precomputed in the
simulation, real-time obstacle detection was not required
during the execution phase. The robot followed the
predefined trajectory without actively re-evaluating its
surroundings, assuming a static environment, meaning real-
time obstacle detection was not necessary during execution.
These maps were loaded into the simulation, and the
algorithm selected the appropriate map based on the test
scenario being executed, ensuring that all test runs followed
the same obstacle distribution and making the results directly
comparable. In the physical execution using the TurtleBot 2,
the robot followed the precomputed paths without performing
real-time obstacle detection, as the environment was assumed
to be identical to the simulation

To further analyze the performance of the proposed
navigation approach, execution times were recorded for both
the simulated algorithm and the physical implementation
using the TurtleBot 2 platform. In the simulation, execution
time was measured as the total duration from the moment the
algorithm started computing the path until it successfully
reached the goal position. This included both the
computational time required to generate the path and the
simulated travel time based on the agent’s movement model.

Test | Mapl Map2 Map3 Map4 Map5s

1 23 15.97 22.95 19.05 12.48
2 21.98 16.46 21.05 21.87 14.61
3 21.18 16.2 22.76 22.94 15.16
4 22.65 14.37 21.3 23.69 17.16

5 23.22 16.09 22293  20.54 16.83
6 22.65 15.24 22.19 23 16.02
7 20.56 15.84 22.17 23.7 16.21
8 22.8 14.34 22.34 23.17 14.15

e}

22.14 16.15 21.71 22.62 17.7

10 19.64 15.69 22.85 22.77 15.43
Avg 21.982 15.635 22.161 22.335 15.575
SdDev | 1.1693 0.75 0.639 1.479 1.561

Table 1: Path-planning algorithm execution time (ms)

For the physical execution, the recorded execution time
corresponded to the actual duration taken by the TurtleBot 2
to follow the planned path from start to goal, considering its
real-world movement constraints. Table 1 presents the
execution times of the algorithm in the simulated 10x10 grid
environment, highlighting the computational -efficiency
across different test scenarios. Meanwhile, Table 2
summarizes the execution times observed when executing the
planned paths on the TurtleBot 2, providing insights into the

real-world feasibility of the solution. These results help assess
the algorithm’s scalability and practical applicability in
dynamic environments.

In Table 1, the metric represents the time required by the
algorithm to compute a path within the simulated 10x10 grid
environment, considering predefined obstacle placements.
The recorded values reflect the computational efficiency of
the path-planning process, measuring how quickly the
algorithm can generate a feasible trajectory before execution.

Test | Mapl Map2 Map3 Map4 Map5

1 32.183 64.883 51362 42914 56.646
2 32.183 64.898 51381 42912 56.613

w

32.173 64922 51.392 42895 56.639
32.19  64.896 51.363 4292  56.585
5 32.156 64915 51.267 42911 56.612
32.151 64909 51.328 42912 56.596

~N N

32.173 64.896 51.366 42911 56.643
8 32.186 64904 51.366 42.899 56.646

9 32171  64.89 51.335 42.891 56.643
10 32.184 64.885 51.324 42983 56.612
Avg 32.175 64.9 51.348 42915 56.624
SdDev | 0.0129 0.0127 0.0362 0.0256 0.0226

Table 2: TurtletBot 2’s trajectory travel time (s)

In Table 2, the metric represents the time required by the
TurtleBot 2 to physically traverse the planned path and reach
its goal. The recorded values reflect the overall execution
performance in a real-world setting, accounting for factors
such as motor response, control accuracy, wheel slip, and
environmental conditions

[
L §==

Fig. 5: Map 1 Fig. 6: Map 2

The first test scenario referred to as Map 1 involves

navigating the agent from the starting position at coordinates
(2,2) to the target at (7,7), see Fig. 5 where the origin is
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located at the left-bottom corner (0,0). This map includes a

series of static obstacles placed strategically to evaluate the

algorithm. The system was evaluated based on the following

parameters:

e Execution Time: Measured in milliseconds (ms) to
capture minor variations.

e Path Accuracy: Ensuring the agent reaches the target
while avoiding obstacles.

e Scalability: Testing the algorithm under varying
complexity levels of ability to calculate an efficient and
collision-free path.

The second test scenario, Map 2, assesses the agent's
ability to navigate from the starting position at coordinates
(1,0) to the target at (3,6), see Fig. 6. This map introduces a
different obstacle arrangement, designed to challenge the
algorithm’s adaptability. The evaluation criteria remain
consistent, determining the algorithm’s efficiency in handling
more complex navigation tasks. Consistent performance
across multiple runs is crucial as it demonstrates the reliability
and stability of the system under varying conditions. It
ensures that the navigation algorithm can be trusted to
perform effectively in real-world applications, reducing the
likelihood of unexpected failures.

The physical implementation of the TurtleBot 2 involved
translating the navigation algorithm from the simulation
environment into a real-world robot system. One of the
critical challenges in the physical environment was ensuring
that the robot could maintain precise control over its
movement despite external factors like wheel slippage, sensor
inaccuracies, and environmental noise. The robot's
performance was evaluated by running the algorithm multiple
times across different obstacle configurations to ensure
consistent results.

1 2

Fig. 7: Map 3

Fig. 8: Map 4

This step was crucial in validating the theoretical models
and algorithms developed during the simulation phase,
whereas the TurtleBot 2 successfully navigated through a
complex environment. Additional testing scenarios were
conducted to further validate the algorithm's performance.
These scenarios include navigating the agent across different
obstacle configurations with the following start and target
coordinates: Map 3 from (9,4) to (1,1), see Fig. 7; Map 4 from
(1,1) to (5,6), see Fig. 8; and Map 5 from (2,0) to (9,8), see
Fig. 9.

The same evaluation criteria were applied to these
scenarios, focusing on execution time, path accuracy, and
obstacle avoidance. The tests were successful, with the agent
consistently reaching the target positions without collisions,
demonstrating the reliability and effectiveness of the path
planning solution.

Fig. 9: Map 5

The navigation process on the physical TurtleBot 2 was
built on the same core principles used in the simulation, but it
included additional real-world considerations; based on the
same maps, TurtleBot 2 conducted excellent physical tests.
The robot successfully navigated from the starting position to
the target coordinates without collisions, accurately following
the planned path. Despite the challenges posed by the obstacle
arrangements, the TurtleBot 2 demonstrated precise
movement and responsiveness, validating the algorithm's
effectiveness in real-world conditions. The tests confirmed
that the system's execution was reliable, with consistent
performance across multiple runs. This successful outcome
demonstrates the robustness and accuracy of the navigation
strategy implemented in this project.

5. RESULTS

The performance of the autonomous navigation system for the
TurtleBot 2 robot was evaluated through extensive testing in
both simulated and physical environments. The key
evaluation criteria were execution time, path accuracy, and
scalability, all tested across distinct map scenarios.

5.1 Simulation Results

In the simulation phase, multiple tests were conducted on a
10 X 10 grid with static obstacles placed strategically to
challenge the algorithm’s ability to find optimal paths. In the
Map 1 scenario, where the robot started at coordinates (2,2)
and targeted (7,7), the average execution time for calculating
the optimal path was measured at 21.982 milliseconds. This
demonstrated a slower response despite the simplicity of the
obstacle arrangement. For Map 2, with a starting point of (1,0)
and a target at (3,6), the execution time was slightly lower at
an average of 15.635 milliseconds, attributed to the algorithm
having to explore fewer spaces than Map 1.

Regarding path accuracy, the algorithm successfully
guided the robot to the target positions in all maps without
collisions. The robot consistently reached its destination
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while avoiding obstacles, highlighting the high accuracy of
the pathfinding. The A* algorithm was able to effectively
handle obstacle avoidance and trajectory optimization,
ensuring that the robot followed the planned path precisely.

When it came to scalability, the algorithm demonstrated
its ability to maintain performance even as the map
complexity increased in Map 2. Despite the addition of more
obstacles, this benefits the speed of the process by not
increasing the algorithm process values related to blocked
cells present on the map.

5.2 Physical Implementation Results

The implementation was carried out using a TurtleBot 2
platform with a Nvidia Jetson TX2 as the main computer as
shown in Fig. 10. For the physical implementation, tests were
conducted under similar conditions to those of the simulation.
The performance in the real world was evaluated by running
the system across different obstacle configurations multiple
times, see Fig. 10. The execution times in the physical tests
ranged from 130 to 160 milliseconds, which were slightly
higher than the simulation due to real-world factors like
sensor noise and wheel slippage. In terms of path accuracy,
the TurtleBot 2 was able to adjust its course in response to
deviations caused by external factors such as surface
irregularities or sensor inaccuracies, confirming the
algorithm’s capability to handle real-world challenges while
maintaining precise navigation.

Fig. 10: Physical implementation

Lastly, the system’s reliability was evident in its
consistent performance across multiple runs. TurtleBot 2 was
able to navigate without collisions in various environments,
demonstrating its ability to adapt well to unexpected changes.
This highlights the stability and reliability of the path-
planning solution in real-world applications.

The results from both simulation and physical testing
corroborate each other, confirming the effectiveness of the
proposed navigation system. The algorithm showed
adaptability to different obstacle arrangements, and the robot
demonstrated reliable behavior in both simulated and physical
settings. These results validate the use of discrete path-
planning algorithms like A* for autonomous navigation,
making the system suitable for real-world deployment in
mobile robotics.

6. CONCLUSIONS

In conclusion, this work demonstrated the effectiveness and
robustness of a navigation algorithm implemented on
TurtleBot 2, both in simulation and physical tests. By utilizing

a navigation system, the robot successfully navigated from a
starting position to a target in a complex environment.

The system's performance in the physical environment
validated the results obtained from simulations, confirming
that the algorithm can adapt to various obstacle configurations
while ensuring precise and collision-free navigation. The tests
indicated consistent performance across multiple runs,
highlighting the system's stability and reliability for real-
world applications, such as autonomous delivery robots or
self-driving vehicles. Future work may involve implementing
dynamic path-planning algorithms and integrating additional
sensors to further enhance the system's efficiency and
versatility in different environments.

On this foundation, this work illustrates the capability of
robotic systems to perform complex navigation tasks and
provides a solid foundation for future developments in
autonomous robotics, expanding the potential applications of
such systems in real-world scenarios.
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